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Chapter 1

Introduction

The Orbit Simulation Toolkit OSTK is a program written in C/C++ with the purpose to
simulate satellite orbits. The development started in 2008 at the Albert-Einstein-Institute
(AEI) in Hannover with the aim to provide orbital informations and parameters like doppler
shifts between two satellites. These informations are helpful for the conception of satellite
based laser interferometers, which can be used to measure the inter-satellite distance. While
the distance variations can be used, on the one hand to map the Earth gravity field and on
the other hand to detect gravitational waves in space.
For later application the joint ESA and NASA mission Laser Interferometer Space Antenna
(LISA) is planned, but not to be launched earlier than 20201. This mission consists of three
satellites in a heliocentric orbit, arranged in an equilateral triangle with 5 million km side
length. Laser links between the satellites will measure distance variations on picometer level,
which can be caused by space-time deformations due to gravitational waves.

Wheras the satellite pair GRACE is an example for a mission with purpose to map Earth’s
gravity field. These satellites were launched in 2002 and are equipped microwave links2.
The microwave links measure the distance fluctations, which are also caused by changes in
Earth’s gravity field. These length measurements can be used reconstruct a map of the
gravity field.

Other closely related missions are

� CHAMP: this single satellite was launchned in 2002 and provides accurate orbit infor-
mations due to GPS and accelerometer, which can also used to create Earth gravity
maps

� GOCE: this drag-free satellite uses gradiometer to measure directly Earth’s gravity
field

Variations in Earth’s gravity field provide many useful informations. On the first sight they
are caused by mass shifts, but a closer look will break down the sources into effects related
to hydrology, topography, oceans, atmosphere, Earth’s crust and core. Therefore the whole
geoscientific community benefits from such maps and models.

Orbit simulations, which use these environmental models, are important on this field.
For example in GRACE they are used to provide reference orbits, whereby the resid-
uals between reference and GRACE orbits are the input for new Earth gravity models
[Gruber and Flechtner, 2007].

Furthermore the results of simulations are used for the development of new satellite hardware
or for the conception of new satellite missions or constellations. Although there are commer-
cial orbit simulator available, they are often limited in their field of application and not free
available or accessable. Furthermore scientific applications require very precise knowledge
of the used models and methods, which is often not provided in proprietary software.

1ESA homepage: http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=47277
2dual band on each satellite to correct for ionospheric perturbations (cf. GPS L1 and L2)
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1.1 OSTK Overview

OSTK is being developed as a scientific orbit simulator, with the aim to provide knowledge
in satellite dynamics. It excels in the diversity of models and methods, which simultaneously
enable to verify the implementations and get to know different point of views on subjects. It
is very flexible and adoptable, but on the other hand requires understanding of satellite dy-
namics, the models and the structure of the simulator. It is surely no out-of-the-box software.

The extend can be described with:

� Environmental Models

– Earth Gravity Models

* various static models included (EGM96, ITG03, GGM03, EGM08, ...) and
easy expandable

* ocean & atmosphere tide (EOT08a and FES2004)

* two solid earth tide models (IERS solution and Rizos/Stolz)

* short-term variations via AOD1B de-aliasing product provided by GFZ

* tide generating potential using Hartman & Wenzel 1995 potential catalog

– Earth Atmosphere Density Models

* exponential model [Montenbruck and Gill, 2000]

* Harries-Priester: exponential with diurnal variations [Montenbruck and Gill, 2000]

* NRL-MSI-00 model considering solar & geomagnetic activity [Picone et al., 2002]

– Earth’s Rotation

* only z-Rotation

* IAU-2000 solution considering precession & nutation and polar motion (ex-
ternal library: SOFA3)

– Celestial Body Position

* JPL DE405 ephemeris catalog4[Standish, 1998]

� Physical or Mathematical Models

– Newton’s Second Gravitational Law in a pseudo-inertial frame

– Euler’s Moment equations, moment of inertia, principal axes system computation

– Attitude using quaternions

– Forces & Torques:

* Earth’s gravitational acceleration (two methods)

* Earth’s gravity gradient torque considering satellite’s total mass distribution
or monopole approximation using moment of inertia tensor

* direct 3rd celestial body acceleration due to Sun, Moon, Venus & Jupiter

* direct solar radiation pressure considering sun-distance and with fixed or
dynamic cross-section area (via 3d S/C model)

* drag with fixed or dynamic cross-section area (via 3d S/C model)

– Coordinate system transformation methods considering pseudo-forces, capable of
handling rotation matrices, angular velocity and quaternions

– Time systems like UTC, UT1, TDB, Julian Date & transformations considering
leap seconds and earth’s rotation variations

� Propagator

– Kepler

– general Runge Kutta with various coefficients based on [Heinzel, 1992]

– 12th order Adams/Bashforth PECE multistep integrator based on [Goetzelmann, 2003]

3SOFA (Standards of Fundamental Astronomy) software libraries, IAU
4original JPL source code was ported to C++ by Benjamin Sheard, AEI
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� Satellite Models

– only point mass

– point mass with fixed parameter like cross-section area or drag coefficient

– 3-d satellite model including surface properties and mass distribution, preliminary
actuators and magnetic dipole moments

1.2 History

In September 2008 the OSTK development began with a simulator for Kepler orbits. It
was a C/C++ program and designed for Linux. Later a graphical user interface based on
OpenGL was implemented, to visualize the orbits and to allow direct user input during sim-
ulations. To take various perturbations into account, a numerical Runge Kutta integrator
was adopted from [Heinzel, 1992], as well as support for geopotential models in spherical
harmonics expansion format as implemented. In 2009 various perturbation models were
included accounting for drag, solar radiation pressure and direct 3rd celestial body acceler-
ation. To be able to validate the implementation, various models were taken into account
(e.g. three atmosphere density models: NRL-MSI, exponential, Harries-Priester). The JPL
DE405 catalog took over the ephemeris calculation. In August/September 2009 Prof. Li
Guangyu5 reviewed OSTK at the AEI and further helped at the implementation of further
improvements (e.g. the solar eclipse functions for solar radiation pressure). In addition a
new multistep integration method was introduced. By the end of 2009 a new version from
scratch was written - with the aim to improve the structure of the source code. Furthermore
OSTK reference orbits were calculated and provided to the GRACE L1B processing group6

In 2010 OSTK was adopted to be compatible with Microsoft Windows and the doxygen
source code documentation7 was introduced. An external program was written, to recon-
struct the geopotential field from satellite orbits and ranging data. Later O. Hartwig8

helped at the OSTK development by validating the simulator (checking energy conserva-
tion, forward-backward-integration) and documentation of various parts of the source code.
Furthermore he reviewed, improved and documented the Kepler functions, implemented
AOD1B product support and extrapolated OSTK external data.

1.3 About this Thesis

During my bachelor thesis time, started in April 2010 and ended in September 2010, I have
done following:

1. simulation of pendulum orbits for a GRACE follow on mission; computation of the
influence of every single geopotential coefficient on range measurements expressed in
power spectral density (PSD) (fig. 1.1)

2. computation of colored noise from an interferometer PSD noise model using matlab;
introducing this noise into simulated orbit sets of a pendulum and non-pendulum orbit;
recovering the geopotential coefficients and calculation of the geoid errors (fig. 1.2)

3. implementation and validation of ocean & atmosphere tide models into OSTK (results
in sec. 5.8)

4. implementation of IERS solid Earth tide models (results in sec. 5.8)

5. computation of a new GRACE L1B dataset including a) the residual acceleration
between FES04 and EOT08 ocean tide model (as noise) b) interferometer noise model
from 2.

6. programming and providing a Microsoft Windows version of OSTK that is configured
to compute only arcs of satellite orbits - should be used for recovering the geopotential
field with the energy balance approach

5retired; former Purple Mountain Observatory, China
6a collaboration of various geodesy institutes
7doxygen is a program, which creates proper documentations from comments in the source code
8student, former AEI
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7. implementation of 3d-satellite models and satellite’s attitude in OSTK:

� introducing quaternions, Moment of Inertia, Euler’s Moment equations

� modifying the numerical integrator, solving the equations of rotation numerically

� adapting the GUI

� implementation of functions to calculate the cross-section area dependent on at-
titude for drag and solar radiation pressure

� rough validation of source code by examining if physical effects like nutation and
precession for a spinning top are visible

8. computation of the torque required to rotate a satellite in a pendulum-orbit (fig. 1.3
and 1.4)

Then I realized that further OSTK development will lead to the simulation of attitude and
orbit control systems (AOCS), wherefore a proper preparation of the simulator would be
benefiting. Furthermore OSTK reached to my knowledge the state-of-the-art in modeling
Earth’s gravity field. Hence I froze the OSTK proceeding development and started to solidify
the achieved status by

� restructuring the implementations of all Earth gravity models (static, ocean & at-
mosphere tide, solid earth tide, AOD1B); introducing one class, that can handle all
spherical harmonic expansions for the gravity as well as for the geomagnetic field

� writing a class, that can be used for all coordinate transformations, e.g. for attitude
of the satellite as well as for Earth-Space coordinate system transformations and that
is capable to use of rotation matrices, quaternions and angular velocity

� rewriting the 3d-satellite models, so they are capable to handle actuators (thrusters,
magnetic torquers) and are able to approximate the satellite’s mass density (with point
masses on a grid)

� unifying the methods of handling perturbations; introducing new perturbations like
gravity gradient torque

Although the next section shows some results of simulations, the purpose of this thesis is to
provide a documentation or manual about the physical and mathematical models and meth-
ods that are actually used and information about their implementation in OSTK. However,
this is not a complete documentation, yet. It will be hopefully a living document, so further
chapters will be included or supplemented.

“Every physics thesis starts with Einstein, Newton or Adam & Eva.”

Here Newton’s Gravitational Law is used to introduce the Kepler orbits in chapter 2, fol-
lowed by the classical solution for the rigid body movement. It requires basic knowledge in
orbital mechanics and concludes with the basic concept of simulating the attitude and orbit.

In chapter 3 a rough overview about the structure of OSTK is given and some terms are
introduced, that may appear in later chapters.

The chapter 4 summarizes general formulas for coordinate transformations and describes
the coordinate systems.

The 5th chapter is the main chapter of this thesis. It provides the background for all in-
cluded Earth gravity models as well as the formulas. Furthermore the Appendix B contains
useful mathematical relations and derivations for this chapter.

Whereby chapter 6 covers the actual definition of satellites in OSTK and introduces the
approach to model them.

Some formulas for the forces and torques acting on the Satellite are summarized in chapter 7.

In chapter 8 the conclusion and outlook is located.
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1.4 Results of Simulations

1.4.1 Ranging Sensitivity

The GRACE inter-satellite distance variations are measured with a microwave system and
are influenced by the gravity field and perturbations like drag or orbital parameters. A sub-
ject of research is the optimal reconstruction of the gravity signal from length measurements.
The opposite direction, the influence of Earth’s gravity signal on ranging measurements, can
be used to estimate performance requirements for future ranging systems.
In fig. 1.1 the influence of two high-degree geopotential coefficients on a range measurement
in terms of amplitude spectral density is shown. A pendulum orbit9 with 200 km along
track separation and with ±45◦ maximum yaw angle variation was considered here. The
orbital frequency peak (1 revolution) is located at 10−4 Hz . The theory of these frequency
patterns is described in [Thomas, 1999].
An estimated noise level of a laser interferometer is also illustrated. As shown such an in-
terferometer would be able to measure even these high coefficients (in the main bandwidth).
All parameters depend on the satellite’s orbit as well as on the satellite constellation.

Figure 1.1: For this plot the range accelerations due to geopotential coefficients (l=110,
m=2) and (l=120, m=120) in a pendulum GRACE orbit (L = 200 km, h = 380 km) were
calculated. The range accelerations were transformed into an amplitude spectral density
(ASD) and integrated in the frequency domain to obtain the range ASD (denoted as PSD
in the plot). For comparison an estimated laser interferometer noise model was plotted.

1.4.2 Ranging Noise

For fig. 1.2 the influence of inter-satellite ranging noise was analyzed. Ephemeris sets for
a GRACE like and for a pendulum orbit were computed and noise with an amplitude of
10 nm/

√
Hz was superimposed in both cases. As next step the geopotential coefficients were

recovered using the acceleration approach. The spatial distribution of the differences between
input and recovered coefficients in terms of geoid height are shown. For the pendulum orbit
the acceleration approach yielded results with lower noise in the coefficients. However, the
noise level is very low and near to the numerical accuracy of the implemented acceleration

9the orbital planes of the satellites are shifted at the equator (Right Ascension in Kepler elements, cf. sec.
2.1.1); these orbits have a nearly constant along-track distance and a time-variant cross-track component
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approach. Further simulations, also with other approaches, should be done to solidify the
superior performance of an pendulum orbit.

Figure 1.2: Influence of white noise 10 nm/
√

Hz in ranging observables in a GRACE like con-
figuration with along track distance of 200 km and satellite height h=380 km in a pendulum
orbit (cross track separation 50 km) and non-pendulum orbit case (cross track separation 0
km).

1.4.3 Attitude

In this section attitude simulation results are presented. Under the assumption of a circular
orbit, only acceleration due to the monopole term and negligible perturbation torques, a
satellite can rotate torque free with the orbital frequency, so that the bottom side is always
parallel to Earth’s surface. For the fig. 1.3 a nearly circular orbit for two satellites was
chosen. The satellites had an along track separation of about 200 km. Shown is the required
torque to assure a pointing towards the other satellite (torque acts on the follower satellite).
The torque is given in the principal axes (= body fixed) system and is nearly zero for a
point mass Earth (the small variation in the y-component is due to the small ellipticity of
the orbit). Activating higher moments of the geopotential causes large variations in the
y-component mainly due to considered oblateness of the Earth.

Figure 1.3: Torque in principal axis system required to assure pointing towards the other
satellite; high, nearly circular orbit in a GRACE like orbit configuration; no perturbations
like gravity gradient torque
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In fig. 1.4 the previous simulation was repeated for a pendulum orbit. Torques along every
principal axis have to be applied to warrant the pointing. These preliminary results look
promising, because on the one hand the implementation seems to be physical correct and on
the other hand the torques in the pendulum orbit were roughly, concurring compared with
a plot provided by an independent Institute. However, further verification has to be done.

Figure 1.4: Torque in principal axis system required to assure pointing towards the other
satellite; pendulum orbit case; on the left plot the roll axis is fixed w.r.t. to inertial space,
while on the right plot all axes vary; no perturbations like gravity gradient torque
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Chapter 2

Satellite Dynamics

Describing an artificial satellite (lat. “satelles” – attendant) is a subject of classical mecha-
nics. A preliminary solution can be obtained by assuming the satellite R is orbiting only
the planet P and both objects are point masses. The trajectory ~r(t) of the Satellite is the
solution of the well-known two-body problem.

2.1 Kepler’s Solution

It is reasonable to assume that the artificial satellite has negligible mass in comparison to
the planet ( mR � mp ). Hence the satellite will not influence the motion of the planet.
The differential equations of this problem are given by gravitational acceleration due to a
point mass (Newton’s Gravitational Law):

~̈r(t) = −G ·mp

|~r(t)|3
~r(t), (2.1)

where we have chosen the planet’s center as origin of the coordinate system and G as the
gravitational constant. The vector of angular momentum is a conserved quantity and is
defined as

~L(t) := ~r(t)×mR · ~̇r(t). (2.2)

If the direction of this vector is fixed, the motion of the satellite takes place in a fixed orbital
plane with normal vector ~L.

The time derivative of ~L is the torque ~T

~T (t) := ~̇L = ~r(t)× ~F (t) (2.3)

with external force ~F (t) = mR · ~̈r(t). The force vector of the satellite points towards the
planet and the position vector ~r in opposite direction; hence, the cross-product and conse-
quently the torque on the satellite is zero. The motion of a satellite in the unperturbed,
Keplerian case, takes place in a fixed orbital plane.

Examining the three Keplerian Laws and switching from Cartesian Coordinates to Keplerian
Elements (cf. next section 2.1.1) will lead to a solution for the differential equation (2.1)
with four different orbit types: circular (e = 0), elliptic (0 < e < 1) , parabolic (e = 1)
and hyperbolic (e > 1) depending on the initial conditions, whereas the elliptic orbit is the
most important one for LEO satellites. Several difficulties occur when all orbital types have
to be considered in the calculations, like singularities and undefined Keplerian Elements
for special orbital cases (e.g. circular-equatorial). The general solution (with special cases)
is extensively discussed in [Vallado and McClain, 2007]. Unfortunately, there is no general
closed-form solution for the transformation between Cartesian Coordinates and Keplerian
Elements, because the equation for the eccentric anomaly E of the form

E(t)− e sin(E(t)) = M(t) (2.4)

13
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has to be solved numerically, e.g. iteratively using the Newton Method.

Kepler’s solution can also be applied to the general two-body problem, where mR � mp

is not valid. In the absence of an external force field, the center of mass (CoM) of such a

system moves uniformly. The definition of the CoM ~R for a system consisting of n point
masses is

~R =
1

M

n∑
i=1

mi · ~ri with total mass M =

n∑
i=1

mi. (2.5)

One can obtain the solution of the general two-body problem by separating the trajectories
~r(t) and ~p(t) of both objects into a movement of the CoM ~R(t) and into a movement caused
due to the previously discussed simplified Keplerian solution:

~r(t) = ~R(t) + ~rKepler(t) (2.6)

~p(t) = ~R(t) + ~pKepler(t) (2.7)

The preconditions of the simplified Keplerian problem arise by switching to reduced masses
and a coordinate system with origin at the CoM.

2.1.1 Keplerian Elements

The six Keplerian Elements are a set of variables, which can be used to describe Ke-
pler orbits in a radial symmetric gravitational field. There is a unique transformation
[Vallado and McClain, 2007] between the position and velocity and the six Keplerian El-
ements, which are:

� Eccentricity e: defines the oblateness of the orbital trajectory:

e =
ra − rp

ra + rp
(2.8)

where ra is the radius of apoapsis (farthest distance between focus of the ellipse and
trajectory = semi-major axis a) and rp is the radius of periapsis1 (closest distance
= semi-minor axis b). Danger of confusion causes the not-related definition of the
eccentricity of an ellipse:

e =

√
a2 − b2
a

. (2.9)

� Semi-Major Axis a: defines the size of the orbital ellipse.

� Inclination i: the angle between the orbital plane and a reference plane (usually
Earth’s equatorial plane). For an equatorial orbit i = 0◦ and i = 90◦ corresponds to a
polar orbit.

� Right Ascension of the Ascending Node Ω: angle between the ascending node
(intersection line of equatorial and orbital plane) and the x-axis of the inertial frame.

� Argument of Perigee ω: angle between ascending node and orbital perigee.

� Mean Anomaly M at a specific Epoch: position of the satellite in orbit expressed
as a fraction of 2π (without geometrical meaning). 0 or 2π denotes a satellite at
the perigee, whereby a satellite with M = π is located at the apogee. M changes
uniformly with time. The true anomaly ν and eccentric anomaly E have a geometrical
interpretation and can be derived from M .

As already mentioned for special cases some elements may be undefined and new elements
have to be introduced. The Keplerian Elements are especially useful for conception of new
satellite orbits, because the first five elements have an geometrical meaning, as shown in
figure 2.1, while the cartesian state vector of position and velocity provides no (direct)
information about the shape of the total orbit.

1“perapsis“ is the general term; related to Sun, Moon, Earth the words “perihelion“, “perigee“, ”perias-
tron” (resp.) are common
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Figure 2.1: Keplerian Elements, Image from Wikipedia

2.1.2 Perturbations of Keplerian Orbits

Handling perturbations with Keplerian Elements is difficult (e.g. acceleration due to moon
or deceleration due to atmospheric drag). There exists a perturbation theory, which for
example is described in [Sidi, 2006]. The influence of tides (and general perturbations) on
Keplerian Orbits is also very well explained in [Baur, 2002, ch. 4: Kaula-Theory]. One can
obtain an analytical expression for the change rate of the Keplerian Elements for conservative
and non-conservative perturbation forces:

de

dt
,
da

dt
,
dω

dt
,
dΩ

dt
,
di

dt

For example the change of the orbital radius for a circular orbit (= semi-major axis a) due
to drag can be described with [Sidi, 2006, eq. 2.7.17]

da

dt
= −ρ

√
a ·GM Cd ·Ac

m
(2.10)

where ρ is the air density, Cd the drag coefficient, Ac the cross-section area perpendicular
to the air flux and m is the mass of the satellite. It is usually necessary to integrate the
equations numerically to obtain the orbital elements for a particular time. Nevertheless the
influence of various perturbation parameters becomes directly visible in these equations.

2.2 Rigid Body Solution

A more advanced approach to calculate the motion of a satellite is to assume a satellite as
a rigid body and to use a numerical integrator. On the one hand, this ansatz does not ide-
alize the satellite as a point mass, and on the other hand, a numerical integrator is (nearly)
independent of the considered accelerations acting on the satellite. It is also possible to use
only a numerical integrator and to handle the satellite as a point mass, if a 3-d model of the
satellite is not available.

A rigid body in classical mechanics is defined as a body with fixed mass distribution with
respect to a body fixed coordinate system (BFS). For continuous systems with mass density
ρ and [ρ] = kg/m3 this can expressed with

d

dt
ρ(~r|BFS(t)) = 0 (2.11)

or in the discrete case with an arbitrary number of point masses with position ~ri:

d

dt
~ri, |BFS(t) = 0 ∀i. (2.12)
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It is convenient to choose the origin of the body fixed system (BFS) at the center of mass
(CoM) , which can be calculated using eq. (2.5). The subscript |BFS indicates the coordinate
system or basis of a vector, as described in chapter 4.
As stated by classical mechanics (and shown later) the motion can be separated into a
translation of the CoM and a rotation around an axis through the CoM. In first case, we
assume the total mass M of the body is concentrated at the center of mass position ~R(t)
and all forces act on this point. Newton’s second law states:

~F (t) = ~F1(t) + ~F2(t) + . . .+ FN (t) = M · ~̈R(t) (2.13)

where ~R is with respect to an inertial frame.

In the other case we calculate the torques Ti (also called moments) acting on each point
mass and sum up to obtain the total torque

~T =

n∑
i=1

~Ti. (2.14)

This torque will cause a rotation around an axis through the CoM or will change the rotation
(if the body rotates by initial conditions).

2.2.1 Translation

To acquire the trajectory ~R(t) of the satellite’s CoM, we need the initial position ~R(t0)

and velocity ~̇R(t0) as well as the acceleration due to gravitational attraction ~̈Rg(t), which
can be caused by the primary (the Earth) and by other celestial bodies like the Sun or Moon.

In addition there are several perturbation forces or accelerations ~̈Rp(t), which are usually

non-conservative and dependent on the velocity ~̇R, attitude ~q or other properties of the
satellite. Therefore we write

~̈Rp(t, ~R, ~̇R, ~q)

The trajectory ~R(t) can be calculated using:

~̇R(t) = ~̇R(t0) +

∫ t

t0

[
~̈Rg(t

′′) + ~̈Rp(t′′, ~R, ~q, ~̇R)
]
dt′′ (2.15)

~R(t) = ~R(t0) +

∫ t

t0

~̇R(t′) dt′ (2.16)

or combining the equations to:

~R(t) = ~R(t0) +

∫ t

t0

~̇R(t0) +

(∫ t

t0

~̈Rg(t
′′) + ~̈Rp(t′′, ~R, ~q, ~̇R) dt′′

)
dt′ (2.17)

= ~R(t0) + ~̇R · (t0)(t− t0) +

∫ t

t0

[∫ t′

t0

[
~̈Rg(t

′′) + ~̈Rp(t′′, ~R, ~q, ~̇R)
]
dt′′

]
dt′ (2.18)

However, there is no analytical solution for such a general integral equation. Given initial
conditions a numerical integrator can be used to solve this equation and to obtain the
position and the velocity of the CoM at a particular time.

2.2.2 Rotation

Until now we have described the evolution of the position of the satellite’s (or rigid body’s)
CoM. We now consider the attitude which is equal to the orientation of the body fixed
coordinate system in an inertial frame. An intuitive and geometrical approach to describe
an attitude is to use a rotation axis with unit length ~u(t) and an angle α(t). We further
define the angular velocity vector as the actual rotation axis times the actual angular velocity
[Fogiel, 1987]:

~ω(t) = ~u(t) · α̇(t) with unit [|~ω|] = rad/s (2.19)
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However the angular motion is more complex than the linear motion (translation).
If we assume two homogeneous and cylindrical tops with the same mass but radii r1 and r2

spinning with the same angular velocity around their axis of symmetry. Then the rotation of
the top with higher radius is more stable. A higher radius implies more mass is located way
off the rotation axis and surprisingly we have to apply a higher force or torque to change the
rotation axis. This inertia is the ordinary mass when we consider linear motion and it is
called “moment of inertia”, when we consider angular motion.

Moment of Inertia

The moment of inertia (with respect to a rotation axis ~u) for a discrete rigid body is given
by

I(~u) =

n∑
i=1

mi · d2
i with unit [I] = kg ·m2 (2.20)

where di is the distance of every point mass from the rotation axis. Although we denote
the rotation axis often as a normalized vector ~u (or use the angular velocity vector ~ω), the
origin of the rotation axis is not explicitly defined and can be shifted along the rotation axis.
The center of rotation can be even outside the body, but all points along the rotation axis
will not move due to the rotation. It is possible to generalize the scalar moment of inertia
(MoI) to a tensor and and to calculate the MoI for arbitrary rotation axes.

Moment of Inertia Tensor

The Moment of Inertia tensor for a rigid body is defined as [Williams, 1996, p.281]

Î|BFS =

n∑
i=1

mi ·

y2
i + z2

i −xi · yi −xi · yi
−yi · xi x2

i + z2
i −zi · yi

−zi · xi −yi · zi x2
i + y2

i

 with units [Ii,j ] = kg ·m2 (2.21)

where ~ri = (xi, yi, zi)
T is the point mass’ position in the BFS system. Note that the tensor

depends on the coordinate system, especially on coordinate system’s origin. The Moment
of Inertia with respect to a rotation axis ~u|BFS going through the origin is given by:

I(~u)|BFS = ~uT|BFS · Î|BFS · ~u|BFS. (2.22)

We are allowed to separate the satellite’s motion into a translation and a rotation, because
the rotation axis points always through the center of mass. Hence the CoM will not move,
due to the rotation.

Principal Axis

The MoI tensor Î is a real, 3 × 3 symmetric matrix and hence always diagonalizable (e.g.
with the Jacobi method). The eigenvectors are called the principal axes of the body and
form a new coordinate system. The eigenvalues are the principal moments of inertia. The
physical and mathematical description of rotations is easier in the principal axis system
(PAS).

Angular Momentum

The angular momentum ~L for a point mass was defined in eq. (2.2). For a rigid body the
angular momentum can be easier computed with the product of MoI tensor and angular
velocity [Williams, 1996, p.282 eq. 6-36]:

~L|BFS = Î|BFS · ~ω(BFS) (2.23)

~L|PAS = Î|PAS · ~ω(PAS) (2.24)

(2.25)

where Î|PAS is a diagonal matrix and the argument of ~ω denotes the rotating system.
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Euler’s Moment Equations

As mentioned before, the torque or moment is given by

~T|inertial = ~̇L|inertial (2.26)

where we can now use the later derived equation (4.66) to obtain the change rate in a
rotating system:

~T|inertial = ~̇L|inertial = ~ω(PAS)× L̃|inertial + Q̂ · ˙̃L|PAS (2.27)

with Q̂ = Q̂
|PAS
|inertial being the rotation matrix to rotate a vector from PAS to inertial system.

Multiplying with the inverse rotation matrix Q̂T = Q̂
|inertial
|PAS and keeping in mind, that ~ω

has the direction of the rotation axis and is an eigenvector of QT, leads to

~T|PAS = ~ω|PAS × ·~L|PAS + ~̇L|PAS. (2.28)

The MoI tensor is diagonal, thus this equation can be written in components:

Tx = Ixx ω̇x + ωy ωz(Izz − Iyy), (2.29)

Ty = Iyy ω̇y + ωx ωz(Ixx − Izz), (2.30)

Tz = Izz ω̇z + ωx ωy(Iyy − Ixx), (2.31)

or rearranged

ω̇x =
(Tx − ωy ωz(Izz − Iyy))

Ixx
(2.32)

ω̇y =
(Ty − ωx ωz(Ixx − Iyy))

Iyy
(2.33)

ω̇z =
(Tz − ωx ωy(Iyy − Ixx))

Izz
(2.34)

These are three coupled, nonlinear, differential equations of first order for ~ω(t). They are
referred to as Euler’s Moment Equations and describe the relation between applied external
torque ~T and rotational behavior of a rigid body, like Newton’s Second Law ~F = m~̈r describes
the relation between applied force and linear motion of a rigid body. The torque can be
caused for example by the Earth’s gravity gradient2 or drag or other perturbations.

Quaternions

Problems arise when we want to calculate the rotation axis and angle (hence the attitude)
from the angular velocity. Other methods to describe the attitude are given by rotation ma-
trices or Euler angles, but they also cause problems due to singularities. We can avoid these
problems by using quaternions q

−→
, which are discussed in detail in sec. 4.1.6. Quaternions

can describe rotations and can be defined by a rotation axis ~u and angle α

q
−→

(~u, α)

There are transformation formulas (see sec. 4.2.2):

q
−→
, q̇
−→
⇒ ~ω (2.35)

q̇
−→
, q̈
−→
⇒ ~̇ω (2.36)

~ω ⇒ q
−→
q̇
−→

(2.37)

q̇
−→
, ~̇ω ⇒ q̈

−→
(2.38)

2gravity gradient torque is caused due to the inhomogeneity of the gravitational attraction inside the
satellite
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If the initial orientation ~u(t = 0) and angle α(t = 0) is given, as well as the initial an-
gular velocity ~ω(t = 0) one can calculate (with the methods described in 4.1.6) the initial
quaternions

q
−→

(t = 0), q̇
−→

(t = 0)

Euler’s Moment Equations (2.32) - (2.34) provide ~̇ω, while eq. (2.38) yields to q̈
−→

(t = 0).

Thus, if we know the attitude of the satellite represented by q
−→

(t), q̇
−→

(t) at an arbitrary point

in time and if we can calculate the torque ~T acting on the satellite at this time, which usually
depends on the satellite’s attitude and position, then eq. (2.32) - (2.34) and (2.38) provide
the second derivative of the quaternion q̈

−→
(t). Again, we can use a numerical integrator to

integrate the quaternions and to obtain the attitude for all times.

2.2.3 Forces and Torques

The methods previously described allow to solve the Rigid Body problem and hence to
determine the position and attitude of a satellite in orbit for an arbitrary point in time, if

� the initial conditions are given: position of CoM ~R(t), velocity of CoM ~̇R(t = 0),
attitude and change rate of attitude q

−→
(t = 0), q̇

−→
(t = 0).

� the gravitational and non-gravitational accelerations on the CoM ~̈Rg(t), ~̈Rp(t, ~R, ~̇R, ~q),

and the torques ~T (t) are known (for all times) .

These external forces and torques acting on the satellite are referred to:

� Earth’s gravity field,

� Gravity field of celestial bodies: like Sun, Moon, Venus, Jupiter,

� Drag due to (residual) atmosphere,

� Solar Radiation Pressure (SRP),

� Earth’s albedo SRP (light reflected back from Earth),

� Earth’s magnetic field,

and have to be modeled and computed. In addition satellites are usually partly autonomous.
They use sensors like:

� Cameras or Photo-Diodes (Sun Sensor, Star Sensor),

� Gyroscopes,

� Antennas, GPS Receiver,

� Magnetometer,

and are able to actuate (produce an acceleration or torque) to keep a desired orbit or attitude
with

� Magnetic-Torquers MTQ,

� Reaction & Momentum Wheels,

� Thrusters.

This interaction between measurement and actuation is summarized in an Attitude and
Orbit Control System AOCS .
Although so many different effects need to be taken into account to simulate or predict satel-
lites, they all can be handled with the Rigid Body solution. OSTK is now being developed
to simulate the satellite’s center of mass position, the attitude and the Attitude and Orbit
Control System AOCS (long-term aim).
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Figure 2.2 summarizes and explains the relation of this three fields in the context of the
previously described CoM position ~R and attitude q

−→
for one satellite. Starting point are the

initial conditions for the position, velocity and attitude. These state vectors are introduced
into the integration loop. The quaternions can be used to compute the angular velocity.
Then the environmental models use the state vectors to provide the accelerations and torques
acting on the satellite. As next step the AOCS can simulate a measurement of this state
vector, e.g. by simulating noise or uncertainties. This measured quantities (denoted with
subscript M) are compared with reference values and the deviation (error) is passed to the
control algorithms. Their task is provide a proper actuation signal for thruster or torquers,
which directly produce an actuation force ~FA or torque ~TA. In the end the unmodified
torques and forces (from the environmental models) as well as the actuation forces are
added, and converted to angular and linear acceleration. Then the integrator calculates a
state vector at a later point in time, and the loop repeats.

Figure 2.2: Basic approach to combine orbit, attitude and AOCS simulation



Chapter 3

OSTK Structure

This is a preliminary chapter concerning the practical work with the simulator.

The Orbit Simulation Toolkit is structured in a modular way. These modules are called
classes (or instances of a class). The global class is calles OSTK, which summarizes all func-
tions. The main components of the OSTK class are the subclass SIM and GUI. Later one is
optional, because the program is able to run in a console mode without graphical output.
However the in-time visualisation of vectors or values is very useful for debugging or verifi-
cation. Furthermore the GUI enables user interaction while a simulation is running.

The SIM class contains all models and the scientific part. Various satellites, models and
integration methods can be set up. This class links them to obtain the integration loop,
which was shown in 2.2. A schematic overview is given on the next two pages. Additional
description about the single sub-classes can be found in sec. 3.2 on page 24.

3.1 OSTK commands

The simulator can be controlled and configured with commands. These commands can be
located in configuration files or can be typed in by the user in the graphical user interface.
They all are processed in the source code file commands.cpp. The syntax of such an OSTK
command is always

type command = param1 param2 ....

where only type and command are compulsory. For example sim start will start the simu-
lation, while read egm = /externdata/egm96.dat will load geopotential coefficients.

3.1.1 config.txt

This file is executed at the startup stage. It will set up different paths (for logfiles or
programs) and load the external data, like

� leap seconds for time system conversions

� Earth’s orientation parameter like polar axis position (polar motion) and length
of day (LOD) for the IAU-2000 transformation between the celestial and terrestrial
coordinate system (cf sec. 4.6 about coordinate systems)

� geopotential & tide coefficients for Earth’s gravity field

� JPL DE405 ephemeris file for computation of celestial body position

� AP geomagnetic & F107 solar activity coefficients, which are required by the
NRL-MSI atmosphere model

3.1.2 mission.txt

After the startup stage this file sets up the actual simulation scenario. It defines the sim-
ulation time, duration and the initial conditions of the satellites, next to the perturbations
and desired models. Further description about setting up satellites can be found in sec. 6.4.

21



OSTK
uses:

vars:

OSTK(...):        init memory manager, file manager
init(...):            load config & mission file, start GUI

COMMAND functions:  process commands
       exec_command(string);    
             sub-functions:           
       mp, sim, sys, mission, read, texture,
                    image 

LOADFILE functions: load external data
                      leapsec, EOP, EGM, HW95-Tides
                      AP-coeff, Solar Activity, 
                      IERS-SET, AOT

TEXTWINDOW functions for GUI: defines the text
                       Earth, other Planets, 
                       Satellite CoM (acc, status), 
                       Satellite 3d Model, 
                       Time, Evaluations, Status Line

GUI-CALLBACK functions:     only wrapped

sim2gui_data():    updates the GUI-data

on_idle():              do next step in simulation

on_timer():            write GUI textwindow
                                   call sim2gui_data()
                    request display refresh

run_nogui():          start simulation w/o GUI

sim_start():           create simlog, open ephemeris logfiles, 
                                   set running flag
sim_stop():           counterpart to sim_start() 

interact():   process hotkey or console cmd

create_simlog():   writes all textpages into a file

get_systemtimedate():      get actual time&date
start_app(...):    start other application, 
                                                   e.g. texteditor
create_dir(...):    create directory (simlog)
cons(...):    write text to console (GUI or not)

methods:

vector: AtTimeCommands
commands executed at 
particular time(s)

bool use_gui
speedmode

PERFTIME
vars: 

methods:

eta-time
simulation speed

calc_newaverage()

GUI
uses:

vars:

methods:

OpenGL GLUT library
DevIL image library

windows: Main, Text, Cons, GT
Console-Class
Camera-Class
array: Images, Textures
array: Planets
array: Vectors
array: Points

various textbuffer
console line
modes: fullscreen, 3d model, 
             large console

GLUT callback functions:
    OnFisplay 
    OnReshape, 
    OnKeyboard,
    OnMouse, OnTimer, OnIdle

DRAW functions:
     Vector 
     Planet 
     Point
     CoordSys
     3d-Model
     Textpage
 
get_pressed_key()
get_consolecmd()

MEMMAN

MEMMAN
methods:

mymalloc(...)
myfree(...)

myresize(...)
list status

SIM Class
- next page -

struct: SETTINGS
vars:

file paths, time, 
active text site (gui) , 
active satellite in gui

FILEMAN
uses:

methods:

openfile(...)
closefile(...)
writeline(...)
readline(...)

mem2file(...)
file2mem(...)
list status

MEMMAN

DATALYZER
uses:

methods:
init()
set_columns
set_rows
save2file, loadfile,
direct mem access

interpolation
differentiation

MEMMAN FILEMAN

global accessable 
storage container



SIM class
MEMMAN FILEMAN

vars:
current_time
stores actual simulation time

methods:
set_environment(new_time)
all environmental models will be set 
to the new_time 

calc_sat_acc(satellite_id);
this function calculates all torques 
and forces acting on the satellite 
using of the following methods:

EGM_ForceTorque(---)
SRP_ForceTorque(...)
DRAG_ForceTorque(...)
CELBODIES_ForceTorque(...)
MAGNETIC_ForceTorque(...)

COF
Coordinate Frame transformations

for vectors & matrices
vars: 

methods:

origin position
rotation matrix
angular velocity vector
angular acceleration vector
timestamp

set(...)
OLD2NEW(...)
NEW2OLD(...)

Satellite
vars: name

mass
CoM StateVec: position, velocity, acc.
BFS StateQuat: attitude in quaternions 
kepler elements

propagator_type and id

Coordinate System Transformation:

tCOF    GCRF2NTW, GCRF2RSW,  
            GCRF2sGCRF

surfaces
volume units
point masses, mass distribution
thrusters, magnetic dipole moments

MoI tensor, principal axes

3d model
vars:

Coordinate System Transformation:

tCOF    sGCRF2BFS, BFS2PAS  

vector <ForceTorqueParam>
this vector defines the force & torque models 
acting on this satellite and stores parameter 
necessary to calculate them

CelestialBodies class
calculates celestial body position, 
stores GM values

EGMTides class
computation of Earth’s gravity field, tide 
models, AOD1B and geopotential derivatives

Atmosphere class
estimates atmosphere density;  three 
models; can use solar & geomagnetic 
activity

Earth Rotation class
delivers rotation matrices for celestial - 
terrestrial coordinate transformations; 
IAU-2000 or only z-rotation

Time class
conversion between time systems:  
UT1, UTC, TDB, TT, Julian Date

vector <MultistepIntegr>
various Multistep integration methods 
can be used in one simulation

vector <RungeKuttaIntegr>
various RK methods can be used in 
one simulation

Kepler
the Kepler propagator

vector <Satellite>
multiple satellite can be  simulated at 
once

Coordinate Sys. Transf.
tCOF GCRF2ITRF
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3.2 Basic OSTK classes

3.2.1 class tmemman in memman.h

In OSTK an own memory manager is implemented, which provides malloc, resize and
free functions. At startup of OSTK a Global Table is allocated for the Memory Manager.
In this Global Table all memory allocations are logged. The memory manager has a function
called list status, which will list all current memory allocations and the purpose of them.
This should avoid memory leaks. Unfortunatly the memory address of the Global Table has
to be passed to every sub-class, which needs a memory manager instance.

3.2.2 class tfileman in fileman.h

This class is similiar to the memory manager with the difference, that it provides functions
to read and write files.

3.2.3 class tdatalyzer in datalyzer.h

Datalyzers are global accessable tables of long double values. The datalyzer class uses the
memory manager to allocate space for the tables, and can use the file manager to write the
tables into a file. The table size can be allocated dynamically. Furthermore functions for
interpolation, differentation or calculation of sums and averages are implemented. The data
can be accessed directly via a pointer for accelerated computations.

3.3 Basic OSTK types

The most important type is called ldouble and is on unix systems an abbreviation for
long double. Windows systems have problems to handle long double, hence on windows
machines it is usally a double. The definitions can be found in ldbl.h. Another basic type
is a quaternion quat, which is defined in quat.h:

struct tquat{ ldouble q[4]; };
typedef quat;

OSTK often handles physical values, which have for example a unit. These physical values
are stored and passed through OSTK in the classes located in basictypes.h. All these
classes have the following properties in common:

� timestamp: In general physical values are time dependent. The timestamp indicates,
at which simulation time the values was calculated. The numerical integrator, for
example, prints out a warning if two accelerations with different timestamps had been
passed. This should avoid irregular computation of accelerations (due to bugs or
commented out lines).

� unit: useful for output (graphical or in logfiles) - is set automatically

� cdsys: describes the coordinate system this value belongs to

� satid: usually a physical value belongs to a satellite, this is the id of the satellite

3.3.1 tVec

In this type a 3-dimensional vector ldouble a[3] is stored. It can have one of the following
types:

position, velocity, acceleration, torque, direction

The unit of this vector is chosen automatically.

3.3.2 tTensor

A gravity gradient tensor or the moment of inertia tensor can be hold here.
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3.3.3 tStateVec

This type consists of a position, velocity and acceleration vector. It is used for satellite’s
CoM. This type is passed to the integrator.

3.3.4 tStateQuat

This type consists of a quaternion and the first two time derivatives q
−→
, q̇
−→
, q̈
−→

. This type is

used to express the attitude of the satellite. It is also passed to the integrator.
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Chapter 4

Coordinate Systems

This chapter introduces the basics for coordinate system transformation and summarizes
the used coordinate systems in OSTK. For example, it is convenient to calculate the Earth’s
gravitational acceleration in an Earth-fixed frame and to transform the acceleration into
a space-fixed frame. Or the torques due to drag and solar radiation pressure are usually
calculated in the body-fixed frame, but need to be rotated into the principal axis system to
be considered in Euler’s Moment equations.

4.1 Rotations

Let us assume two coordinate systems with the same origin O. The coordinate system Σ is
a fixed, inertial system with basis vectors:

~ex =

1
0
0

 , ~ey =

0
1
0

 , ~ez =

0
0
1

 (4.1)

while Σ′ is rotated and has basis vectors ~ex′, ~ey′, ~ez′. A position vector ~r can be expressed
in both systems:

~r = rx~ex + ry~ey + rz~ez = rx′~ex′+ ry′~ey′+ rz′~ez′ = ~r′ (4.2)

Note that the coefficients, denoted with the subscript |Σ or |Σ′, are not equal

~r|Σ =

rxry
rz

 6=
r′xr′y
r′z

 = ~r|Σ′. (4.3)

However the relation between both systems can be written as:

~r|Σ =

rxry
rz

 = R̂
|Σ′
|Σ · ~r|Σ′. (4.4)

4.1.1 Rotation Matrix

The rotation matrix is a linear map R̂ : R3 −→ R3, which rotates a vector in the Euclidean
Space. A rotation matrix has a basis, which is denoted with subscripts (indices). The system
which is rotated is written in the superscript.

R̂
|Σ′
|Σ : Σ′ −→ Σ (4.5)

The rotation matrix can be expressed in terms of basis vectors ~ex′, ~ey′, ~ez′:

R̂
|Σ′
|Σ =

( ~ex′)x ( ~ey′)x ( ~ez′)x
( ~ex′)y ( ~ey′)y ( ~ez′)y
( ~ex′)z ( ~ey′)z ( ~ez′)z

 =

 ↑ ↑ ↑
~ex′ ~ey′ ~ez′
↓ ↓ ↓

 (4.6)

27
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An advantage of this definition is the simple way to calculate the time derivatives
˙̂
R and

¨̂
R

by deriving every component of the matrix.
Another method to define the rotation matrix is to use the unit rotation axis ~u|Σ = (x, y, z)T ,
|~u| = 1 and rotation angle α. This method is used in axisangle2rotmatl(...) in
lutils.cpp to compute the following matrix ([Jazar, 2010, p.92, eq. 3.5]:

R̂
|Σ′
|Σ =

 cosα+ x2 · (1− cosα) x · y · (1− cosα)− z · sinα x · z · (1− cosα) + y · sinα
x · y · (1− cosα) + z · sinα cosα+ y2 · (1− cosα) y · z · (1− cosα)− x · sinα
x · z · (1− cosα)− y · sinα y · z · (1− cosα) + x · sinα cosα+ z2 · (1− cosα)


(4.7)

The inverse of a rotation matrix and hence the inverse rotation or inverse basis transforma-
tion is given by the transposed matrix [Goldstein, 1991, eq. 4-34](

R̂
|Σ′
|Σ

)−1

=
(
R̂
|Σ′
|Σ

)T
= R̂

|Σ
|Σ′ : Σ −→ Σ′. (4.8)

4.1.2 Convention: Rotation Axis and Angle

Since the transformation between rotation matrix and rotation axis and angle is not unique,
the following convention is used in OSTK:

� The rotation axis is oriented in such a way, that the z-component is positive. If z = 0,
then y > 0. If z = y = 0, then x > 0.

� The rotation angle has the range (−π,+π], which can be achieved by using this math-
ematical C/C++ operation

α = atan2(sin(α), cos(α)) (4.9)

The function boundRotationAxis(...) in lutils.cpp calculates the rotation axis and
angle, obeying the convention, from arbitrary rotation axis and angle.

4.1.3 How to check if a matrix is a rotation matrix?

A matrix R̂ is a rotation matrix, if both conditions are true:

det(R̂) = +1 (4.10)

R̂ · R̂T = 1̂ (4.11)

These conditions are checked by the function isRotationMatrix(...) in lutils.cpp

4.1.4 How to calculate the rotation axis and angle from a rotation
matrix?

Using the definiton of a rotation matrix in eq. 4.7, one can easily prove that:

cosα =
1

2
· trace(R̂) (4.12)

and

Q̂ := R̂− R̂T = 2 sin(α) ·

 0 −z y
z 0 −x
−y x 0

 (4.13)

Using the matrix Q̂, we can define the vector

~t =

Q2,1 −Q1,2

Q0,2 −Q2,0

Q1,0 −Q0,1

 (4.14)
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It is useful to define this vector using not only single matrix elements, but the difference or
sum between the elements, to avoid numerical instabilities, if the rotation matrix gets de-

orthogonalized during mathematical operations. The normalized vector ~q =
~t
|~t| is parallel to

the rotation axis. One has to check the orientation of the rotation axis and if necessary to re-
orient it, using the function boundRotationAxis(...) in lutils.cpp . If the z-component
is non-zero, the following equation can be used:

sinα =
Q1,0

2.0 · tz
(4.15)

to get the sine of the rotation angle. The cosine is given in eq. 4.12, hence eq. 4.9 yields to
the rotation angle. One has to consider the special cases, where Q̂ = 0 in case of rotation
angles of 0 or π. This method is used in rotmat2axisanglel(...) in lutils.cpp .

4.1.5 Euler Angles

It is possible to express every rotation with three Euler angles, often denoted as Φ,Θ,Ψ.
These three angles describe rotations around the body fixed axes and have to be executed
in a predefined order, because they do not commutate[Goldstein, 1991, p.119]. There are 12
possible conventions according to the sign and order for the Euler angles[Goldstein, 1991,
p.120]1, and in addition the rotation matrices describing these single rotations are not always
invertible. Hence they are not optimal to describe rotations, but still very common. In OSTK
an arbitrary convention of Euler angles can be expressed with 6 characters, e.g. “+Z-X+Y”,
which defines the sign and order of rotations. In this example, at first a rotation around the
z-axis is performed with angle Φ, then a rotation around the X axis with angle −Θ and in
the end a rotation around the Y-axis with angle Ψ. These three steps transform a coordinate
system Σ into a coordinate system Σ′. This overall transformation R̂ can be described as a
product of three elementary rotation matrices:

R̂ = R̂Y (+Φ) · R̂X(−Θ) · R̂Z(+Ψ) (4.16)

R̂X(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 R̂Y (α) =

 cos(α) 0 + sin(α)
0 1 0

− sin(α) 0 cos(α)

 (4.17)

R̂Z(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (4.18)

The function EulerAngles2Rotmat(...) in lutils.cpp will calculate the resulting rota-
tion matrix from a convention string and Euler angles. The inverse transformation is not
yet implemented.

4.1.6 Quaternions

Quaternions provide an elegant way to describe rotations in the three dimensional space.
Equations presented here are mainly from [Gould, 2007]. Quaternions can be constructed
by extending the R with hyper-complex numbers i, j, k, similar to the familiar complex
numbers:

q
−→

= q0 + iq1 + jq2 + kq3 (4.19)

The hyper-complex numbers obey special rules and do not commute [Gould, 2007, sec. 7.5].
Addition and subtraction is handled like in the R4:

r−→ = q
−→

+ p
−→

= (q0 + p0) + i · (q1 + p1) + j · (q2 + p2) + k · (q3 + p3) (4.20)

r−→ = q
−→
− p
−→

= (q0 − p0) + i · (q1 − p1) + j · (q2 − p2) + k · (q3 − p3) (4.21)

1and Wikipedia
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The product is more complicated and does not commute:

r−→ = q
−→
· p
−→

(4.22)

r0 = q0 · p0 − q1 · p1 − q2 · q2 − q3 · p3 (4.23)

r1 = q0 · p1 + q1 · p0 + q2 · q3 − q3 · p2 (4.24)

r2 = q0 · p2 − q1 · p3 + q2 · q0 + q3 · p1 (4.25)

r3 = q0 · p3 + q1 · p2 − q2 · q1 + q3 · p0 (4.26)

The complex conjugated quaternion is:

q
−→
∗ = q0 − iq1 − jq2 − kq3 (4.27)

(4.28)

and the length of a quaternion is

| q
−→
| =

√
q
−→
· q
−→
∗ =
√
q0 · q0 + q1 · q1 + q2 · q2 + q3 · q3. (4.29)

A rotation with unit rotation axis ~u = (u1, u2, u3) and rotation angle ϕ can be expressed
with a unit quaternion

q
−→

= cos
(ϕ

2

)
+ (iu1 + ju2 + ku3) · sin

(ϕ
2

)
. (4.30)

A position vector ~r = (x, y, z) can be rotated by defining the quaternion

r−→ = 0 + ix+ jy + kz, (4.31)

and using the following relation:

r′−→ = q
−→
· r−→ · q−→

∗ = (0, x′, y′, z′) (4.32)

where the prime denotes the rotated vector, like in

~r′ =

x′y′
z′

 = R̂(u, ϕ) · ~r. (4.33)

One can introduce an extended notation like for rotation matrices:

q
−→
|Σ′
|Σ (4.34)

where we can see between which systems a quaternion rotates.

The basic operations for working with quaternions are shown in listing 4.1:
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Listing 4.1: basic quaternion functions in quaternion.h� �
// add two qua t e rn i on s
quat qtadd ( const quat x , const quat y ) ;

// s u b t r a c t two qua t e rn i ons
quat qtsub ( const quat x , const quat y ) ;

// mu l t i p l y two qua t e rn i ons
quat qtdot ( const quat x , const quat y ) ;

// s e t a qua te rn ion wi th g i v en components
quat q t s e t ( const ldoub le x , const ldoub le y , const ldoub le z , const ldoub le w) ;

// con juga t e qua t e rn ion
quat qtcon j ( const quat vec ) ;

// norm/ l e n g t h o f a qua te rn ion
l doub le qt l ength ( const quat vec ) ;

// conver t r o t a t i o n a x i s & ang l e to qua te rn ion
quat qt ro tax i s 2quat ( const ldoub le angle , const ldoub le r o tun i tv e c [ 3 ] ) ;

// normal i ze a qua te rn ion
quat qtnormal i ze ( const quat vec ) ;

// conver t a ” quatern ion−v e c t o r ” to usua l v e c t o r in Rˆ3
void qtge t ve c ( const quat qvec , l doub le vec [ 3 ] ) ;

// r o t a t e a v e c t o r us ing a qua t e rn ion
quat qt ro ta t eve c ( const ldoub le vec [ 3 ] , const quat unitquat ) ;

// r o t a t e a v e c t o r us ing a qua t e rn ion
void qt ro ta t eve c ( const ldoub le vec [ 3 ] , const quat unitquat , l doub le destvec [ 3 ] )

;
� �
4.1.7 Relation between Quaternions and Rotation Matrices

The relation between a rotation matrix and quaternion with length 1 is given by [Gould, 2007,
eq. 17.34]

R̂ =

 1
2 − q

2
2 − q3

3 q1q2 + q0q3 q1q3 + q0q2

q1q2 − q0q3
1
2 − q

2
1 − q3

3 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1
1
2 − q

2
1 − q3

2

 (4.35)

The inverse transformation can be found in [Gould, 2007, App. 17B]. Both transformations
are implemented in OSTK as seen in Listing 4.2.

Listing 4.2: quaternion transformation functions in quaternion.h� �
// conver t qua t e rn ion to r o t a t i o n matr ix
void qtquat2rotmat ( quat q , l doub le destmat [ 3 ] [ 3 ] ) ;

// conver t r o t a t i o n matr ix to qua t e rn ion
quat qtrotmat2quat ( const ldoub le r [ 3 ] [ 3 ] ) ;
� �
4.2 Angular Velocity

The angular velocity ~ω of a point mass is given next to the definition from eq. (2.19) by
[Williams, 1996, eq. 3-13]

~ω =
~r × ~̇r
|~r|2

⇔ ~̇r =
d~r

dt
= ~ω × ~r, (4.36)

which connects the linear and the angular velocity. The direction of ~ω is the actual rotation
axis and the magnitude is the angular velocity given in rad/s.

In the next steps the mathematical equations are derived to calculate the angular veloc-
ity of a coordiante system, which can be body fixed frame of the satellite.
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In a rotating frame with basis {~ex′, ~ey′, ~ez′} the endpoints of the basis vectors can be
assumed to be point-masses, Thus we get the three equations

~̇ex′ =
d ~ex′
dt

= ~ωx × ~ex′ (4.37)

~̇ey′ =
d ~ey′
dt

= ~ωy × ~ey′ (4.38)

~̇ez′ =
d ~ez′
dt

= ~ωz × ~ez′. (4.39)

Since the basis vectors keep their length during rotations, the velocity has to be perpendic-
ular to the direction (cf. circular movement):

~ei′ ⊥ ~̇ei′ i ∈ {x, y, z} (4.40)

However, all three coordinate axes can not rotate independently and one can exploit some
algebraic relations [Schnizer, 2003] which result in the fact, that all time-derivatives ~̇ei are
in one plane. Furthermore all ~ωi are equal:

~ω = ~ωx = ~ωy = ~ωz. (4.41)

The normal vector of this plane has the direction of ~ω, hence all time derivatives are per-
pendicular to the angular velocity:

~ω ⊥ ~̇ex′ ~ω ⊥ ~̇ey′ ~ω ⊥ ~̇ez′ (4.42)

thus we can use the definition for the angular velocity:

~̇ei′ =
d ~ei′
dt

= ~ω × ~ei′ i ∈ {x, y, z} (4.43)

Calculating the dot-product with ~ej ′ for i 6= j yields to:

~̇ei′ · ~ej ′ = (~ω × ~ei′) · ~ej ′ = ( ~ei′ × ~ej ′) · ~ω = εijk ~ek′ · ~ω (4.44)

where we used the Levi-Cevita Symbol εijk and this relation for a right-handed coordinate
system:

~ei × ~ej = εijk ~ek. (4.45)

The product ~ek′ · ~ω is the k.th-coefficient ωk′ in the basis {~ex′, ~ey′, ~ez′}:

~ω = ( ~ex′ · ~ω) · ~ex′+ ( ~ey′ · ~ω) · ~ey′+ ( ~ez′ · ~ω) · ~ez′ (4.46)

= ωx′ · ~ex′+ ωy′ · ~ey′+ ωz′ · ~ez′ (4.47)

= ~ω(Σ′) (4.48)

This is the angular velocity of the coordinate system {~ex′, ~ey′, ~ez′} expressed in an arbitrary
basis. The argument of ~ω denotes the system, which rotates. This lengthy derivation was
done, because the angular velocity is not very intuitiv, as it will be shown in the next section.

4.2.1 How to calculate ~ω and ~̇ω from a Rotation Matrix?

Using the definition of R̂ and
˙̂
R and matrix multiplication one obeys with support of eq.

4.44 the skew-symmetric angular velocity tensor ω̂:

˙̂
R · R̂T =

 ↑ ↑ ↑
~̇ex′ ~̇ey′ ~̇ez′
↓ ↓ ↓

 ·
← ~ex′ →
← ~ey′ →
← ~ez′ →

 =

 0 −ωz′ +ωy′
+ωz′ 0 −ωx′
−ωy′ +ωx′ 0

 = ω̂ = −(ω̂)T (4.49)
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or with extended notation

˙̂
R
|Σ′
|Σ ·

(
R̂
|Σ′
|Σ

)T
= ω̂(Σ′) (4.50)

The diagonal elements vanish, because ~ei′ ⊥ ~̇ei′. Differentiation with respect to time yields
to the skew-symmetric angular acceleration tensor:

d

dt
(

˙̂
R · R̂T ) =

¨̂
R · R̂T +

˙̂
R · ˙̂

RT =

 0 − ˙ωz′ + ˙ωy′
+ ˙ωz′ 0 − ˙ωx′
− ˙ωy′ + ˙ωx′ 0

 = ˙̂ω (4.51)

The corresponding vectors are

~ω =
1

2

ω̂2,1 − ω̂1,2

ω̂0,2 − ω̂2,0

ω̂1,0 − ω̂0,1

 and ˙̃ω =
1

2

 ˙̂ω2,1 − ˙̂ω1,2

˙̂ω0,2 − ˙̂ω2,0

˙̂ω1,0 − ˙̂ω0,1

 . (4.52)

It is important to notice, that the angular velocity vector of a system Σ′

~ω(Σ′) =

ω′xω′y
ω′z

 (4.53)

describes the angular velocity of the rotating frame with respect to a fixed frame in the
rotating frame(!) basis. Furthermore the angular velocity vector is an eigenvector of the

rotation matrix and is in the kernel (nullspace) of
˙̂
R (eq. 4.42).

In addition there is a simple relation between the angular velocity tensor and vector:

ω̂ · ~r = ~ω × ~r (4.54)

for an arbitrary vector ~r.

4.2.2 How to calculate ~ω and ~̇ω from Quaternions?

There are simple relations between the angular velocity and quaternions [Gould, 2007]

q̇
−→

=


q̇0

q̇1

q̇2

q̇3

 =
1

2
Ŵ


w1

w2

w3

0

 (4.55)


w1

w2

w3

0

 = 2ŴT


q̇0

q̇1

q̇2

q̇3

 (4.56)

and for angular acceleration:

q̈
−→

=


q̈0

q̇1

q̈2

q̈3

 =
1

2
Ŵ


ẇ1

ẇ2

ẇ3

−2
∑
q̇2
m

 (4.57)


ẇ1

ẇ2

ẇ3

−2
∑
q̇2
m

 = 2ŴT


q̈0

q̈1

q̈2

q̈3

 (4.58)

where the matrix Ŵ is an orthogonal matrix ŴŴT = ŴT Ŵ = 1̂

Ŵ ( q
−→

) =


−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

q0 q1 q2 q3

 (4.59)

The implementation in OSTK is shown in listing 4.3
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Listing 4.3: quaternion to angular velocity and acceleration (and
v.v.) functions in quaternion.h� �
// conver t angu lar v e l o c i t y and a c c e l e r a t i o n to qua t e rn ion ’ s d e r i v a t i v e s
void qtomega2quat ( const quat q , const ldoub le omega [ 3 ] , const ldoub le omegadot

[ 3 ] , quat &qd , quat &qdd ) ;

// conver t qua t e rn ion ’ s d e r i v a t . to angu lar v e l o c i t y and acc .
void qtquat2omega ( quat q , quat qd , quat qdd , l doub le omega [ 3 ] , l doub le omegadot

[ 3 ] ) ;
� �
4.3 Transformation between two coordinate systems

Let us assume an inertial frame Σ with basis vectors ~ex, ~ey, ~ez and a moving and rotating

frame Σ′ with basis vectors ~ex′, ~ey′, ~ez′. The origin of Σ′ has the position ~P , the velocity ~̇P

and acceleration ~̈P . Furthermore Σ′ is rotated w.r.t. Σ. A point mass is located at position
S (see Figure 4.1 ).

Figure 4.1: Scheme of the three coordinate systems (for simplicity only 2-dimensional)

There are various ways to transform the vector coefficients from one system to another. One
can use only the rotation matrices or the angular velocity vector. Furthermore a shifted but
not rotated frame called Σ̃ and the vector ~Q = S|̃Σ are introduced. This vector abbreviates

the formulas in the source code. The rotation matrix and angular velocity in the following
sections are defined as previously

R̂ = R̂
|Σ′
|Σ : |Σ′ → |Σ

~ω = ~ω(Σ′)

The vector coefficient notation, which is useful for programming, as well as the vector
notation, which is usually found in the textbooks, will be shown in the next sections.

4.3.1 Transformation of a position vector: Σ′ −→ Σ

The transformation of the position vector is given by

~S|Σ = R̂ · ~S|Σ′︸ ︷︷ ︸
~Q

+~P|Σ (4.60)

where we know all variables on the right hand side. In vector notation

~S = ~S′ + ~P (4.61)
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4.3.2 Transformation of a velocity vector: Σ′ −→ Σ

Differentiation of 4.60 yields to [Williams, 1996]:

~̇S|Σ =
˙̂
R · ~S|Σ′ + R̂ · ~̇S|Σ′ + ~̇P|Σ (4.62)

= ~ω × R̂ · ~S|Σ′︸ ︷︷ ︸
~Q

+R̂ · ~̇S|Σ′ + ~̇P|Σ (4.63)

~̇S = ~ω × ~S′ + ~̇S′ + ~̇P (4.64)

The single terms are respectively related to

� the rotation of the system Σ′

� the movement of the point mass with respect to Σ′

� the movement of the system Σ′

From the last equation we derive this relation:

R̂ · ~̇S|Σ′ = ~̇Q− ~ω × ~Q (4.65)

4.3.3 Transformation of a velocity vector: Σ′ −→ Σ (rotation only)

If we assume, that both coordinate systems have the same origin, the transformation formula
simplifies to

~̇S|Σ = ~ω × ~S|Σ + R̂ · ~̇S|Σ′ (4.66)

~̇S = ~ω × ~S + ~̇S′ (4.67)

which is widely used in physical derivations.

4.3.4 Transformation of an acceleration vector: Σ′ −→ Σ

Further differentiation will lead to pseudo forces (after lengthy transformations):

~̈S|Σ =
¨̂
R · ~S|Σ′ +

˙̂
R · ~̇S|Σ′ +

˙̂
R · ~̇S|Σ′ + R̂ · ~̈S|Σ′ + ~̈P|Σ (4.68)

=
¨̂
R · ~S|Σ′ + 2

˙̂
R · ~̇S|Σ′ + R̂ · ~̈S|Σ′ + ~̈P|Σ (4.69)

= ~̇ω × ~S′ + ~ω × (~ω × ~S′) + 2 · ~ω × ~̇S′ + ~̈S′ + ~̈P (4.70)

This is the classical transformation formula [Williams, 1996, p.92]. The single summands
are called:

� ~̇ω × R̂~S|Σ′ : tangential acceleration

� 2 · ~ω × R̂ ~̇S|Σ′: coriolis acceleration

� ~ω × (~ω × R̂~S|Σ′): centripetal acceleration

� R̂ · ~̈S|Σ′: acceleration in rotating frame

�
~̈P : acceleration of the origin

In ~Q Notation this formula keeps the structure, but some sign changes will occur:

~̈S|Σ = ~̇ω × R̂~S|Σ′ + ~ω × (~ω × R̂~S|Σ′) + 2 · ~ω × R̂ ~̇S|Σ′ + R̂ · ~̈S|Σ′ + ~̈P|Σ (4.71)

= ~̇ω × ~Q+ ~ω × (~ω × ~Q) + 2 · ~ω × R̂ ~̇S|Σ′ + R̂ · ~̈S|Σ′ + ~̈P|Σ (4.72)

4.65
= ~̇ω × ~Q+ ~ω × (~ω × ~Q) + 2 · ~ω × ( ~̇Q− ~ω × ~Q) + R̂ · ~̈S|Σ′ + ~̈P|Σ (4.73)

= ~̇ω × ~Q− ~ω × (~ω × ~Q) + 2 · ~ω × ~̇Q+ R̂ · ~̈S|Σ′ + ~̈P|Σ (4.74)
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4.3.5 Inverse Transformations: Σ −→ Σ′

For the inverse direction it is easy to calculate the vectors ~Q, ~̇Q and ~̈Q

~Q = ~S|Σ − ~P|Σ (4.75)

~̇Q = ~̇S|Σ − ~̇P|Σ (4.76)

~̈Q = ~̈S|Σ − ~̈P|Σ (4.77)

and the inverse transformations are

~S|Σ′ = R̂T · (~S|Σ − ~P|Σ) = R̂T · ~Q (4.78)

~̇S|Σ′ = R̂T
(
~̇Q− ~ω × ~Q

)
(4.79)

~̈S|Σ′ = R̂T
(
~̈Q− ~̇ω|Σ′ × ~Q− 2 · ~ω|Σ′ × ~̇Q+ ~ω|Σ′ × (~ω × ~Q)

)
(4.80)

or in matrix notation:

~S|Σ′ = R̂T · ~Q (4.81)

~̇S|Σ′ = R̂T ~̇Q+
˙̂
RT ~Q (4.82)

~̈S|Σ′ = R̂T ~̈Q+
¨̂
RT ~Q+ 2

˙̂
RT ~̇Q (4.83)

4.3.6 Transformation of a Matrix

A tensor of second kind (e.g. the MoI tensor or gravity gradient tensor) can be represented
by a matrix M and can be transformed using this relations [Schulz, 2006]:

M̂|Σ = R̂ · M̂|Σ′ · R̂T (4.84)

M̂|Σ′ = R̂T · M̂|Σ · R̂ (4.85)

4.4 OSTK TriadStateMat

This definition will simplify the calculation of satellite-fixed coordinate systems in section
4.6.2. Another application can be found in sec. 6.4.1.

4.4.1 Definition: OSTK TriadStateMat

A TriadStateMat2 in OSTK is a 3-dimensional tensor, in C/C++:

ldouble TriadStateMat[3][3][3]

where the first dimension is the transposed rotation matrix (= R̂T ), the second dimension

is the first time derivative of
˙̂
RT and the third dimension is

¨̂
RT . For example: Let G be a

TriadStateMat, then

G[0] = R̂T , G[1] =
˙̂
RT , G[2][2] =~̈eTz , G[0][1][0] = (~ey)x

4.4.2 How to validate a TriadStateMat?

For debugging purpose it is useful to have a function which can validate a TriadStateMat.
The following methods are implemented in check TriadStateMat(...) in lutils.cpp :

� use of isRotationMatrix(...) in lutils.cpp for G[0] = R̂T

� check if all G[1][i] = ~̇eTi are in one plane using the triple product

� check if G[0][i] = ~eTi is perpendicular to G[1][j] = ~̇eTj

� check if all G[2][i] = ~̈eTi are in one plane using the triple product

2in general a right handed coordinate system is also called “triad“
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4.4.3 How to setup a new TriadStateMat?

A very common problem in OSTK is to calculate a new TriadStateMat. Assume the given
vectors ~p, ~̇p, ~̈p, ~q, ~̇q, ~̈q but ~p is not necessarily perpendicular to ~q. We want to create a
new coordinate system with x-axis parallel to ~p. For simplicity we assume, that ~q and ~p are
nearly perpendicular, and the z-axis of the new system shall be nearly in ~q direction.
This example is adopted from the RSW-coordinate system in sec. 4.6.2:
The system’s origin is the center of mass of the satellite. The y-axis is aligned with the
satellite’s velocity vector. And the x-axis points nearly towards the earth’s center. It is
only nearly, because the velocity and the vector to Earth’s center are only perpendicular for
circular orbits.
Note that ~p and ~q are usually not normalized. The x-axis is easily defined to

~ex =
~p

p
(4.86)

and we also define the unit q vector to

~eq =
~q

q
. (4.87)

The time derivatives of a unit vector can be calculated using the method described in
Appendix A (diffunitvec(...) in lutils.cpp ), so we can reference on

~ex, ~̇ex, ~̈ex, ~eq, ~̇eq, ~̈eq

The z-axis is the normalized cross-product of both unit vectors:

~ez =
~ex × ~eq
| ~ex × ~eq|

(4.88)

~̇ez =
~̇ex × ~eq + ~ex × ~̇eq

| ~̇ex × ~eq + ~ex × ~̇eq|
(4.89)

~̈ez =
~̈ex × ~eq + 2 · ~̇ex × ~̇eq + ~ex × ~̈eq

| ~̈ex × ~eq + 2 · ~̇ex × ~̇eq + ~ex × ~̈eq|
(4.90)

and the y-axis is then

~ey = −( ~ex × ~ez) (4.91)

~̇ey = −( ~̇ex × ~ez + ~ex × ~̇ez) (4.92)

~̈ey = −( ~̈ex × ~ez + 2 · ~̇ex × ~̇ez + ~ex × ~̈ez) (4.93)

This method is implemented in newTriadStateMat(...) in lutils.cpp .

4.4.4 Changing the order of Coordinate Axes

The permutation of the coordinate axes of a TriadStateMat can be done with this func-
tion:

Listing 4.4: lutils.cpp� �
// ! change the axes order o f a TriadStateMat
/* !
* example new−form s t r i n g :
* ’ z x y z ’
*

* − t he 1 s t c ha rac t e r i n d i c a t e s what the new X−a x i s w i l l be
* ( here the o l d z−a x i s )
* − t he 2nd cha rac t e r i n d i c a t e s what the new Y−a x i s w i l l be
* − t he 3 rd cha ra c t e r i n d i c a t e s what the new Z−a x i s w i l l be
* − t he 4 th cha ra c t e r deno te s which a x i s o f t he NEW TriadStateMat
* can be changed ( on ly the s i gn ) to ob t a in a r i g h t
* handed system ! ( i f i t was an ant i−c y c l i c a l permutat ion )
*

*

* @param [ in ] o ldTr iadSta teMat o l d TriadStateMat
* @param [ in ] newform s t r i n g d e s c r i b e s the permutat ion
* @param [ o l d ] newTriadStateMat new TriadStateMat
*/

void change TriadStateMatAxes ( const ldoub le oldTriadStateMat [ 3 ] [ 3 ] [ 3 ] ,
const char newform [ 4 ] ,
l doub le newTriadStateMat [ 3 ] [ 3 ] [ 3 ] ) ;
� �
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4.5 OSTK class tCOF in COF.h

The COF (Coordinate Frame) class is used to calculate all coordinate transformations in
OSTK. Every coordinate system is an instance of this class. Actually the following coordi-
nate systems are defined in OSTK (explained in next section)

enum eCOFtype{ GCRF, ITRF, BFS, RSW, NTW, PAS, sGCRF, NoSys }

A coordinate system transformation is the related to an old basis and a new basis. Hence
all instances are named after them.

tCOF GCRF2NTW;

To perform a proper coordinate transformation of a vector ~r the basis of the vector must
be known (old system). Then we need the knowledge of the origin of the new coordinate
system

~p, ~̇p, ~̈p

as well as information about the new basis vectors, which can be summarized in the rotation
matrix, the angular velocity and acceleration

R̂(~ex, ~ey, ~ez), ~ω, ~̇ω

or in a TriadStateMat or in quaternions

q
−→
, q̇
−→
, q̈
−→

One of this variable set has to be passed to the instance, like,

GCRF2ITRF.set(OriginState, TriadStateMat, Time);

GCRF2ITRF.set(OriginState, QuaternionState, Time);

GCRF2ITRF.set(OriginState, Rotmat, Angular Vel, Angular Acc, Time);

Then it is possible to convert the types tVec, tStateVec, tTensor with functions OLD2NEW(...)
or NEW2OLD(...), e.g.:

tVec accel;

accel.set( GCRF, acceleration, satid, time, ACCVEC);

GCRF2ITRF.OLD2NEW( accel, accel);

would convert the vector from GCRF to ITRF frame. A warning will appear, if the coordi-
nate systems or timestamps of the vector and of the COF instance does not match.

4.5.1 Validation

The implementation of the coordinate system formulas can be validated by integrating the
equations of motions of a single point mass in an inertial (fixed) and in a rotating frame
(with consideration of pseudo-forces) for a particular timespan. After appropriate coordinate
transformation the position vectors have to match.

4.6 Coordinate Systems

The definition of an inertial frame or system3 as introduced in Newtonian mechanics is a non-
trivial task. Only an extra-galactic coordinate system with origin at the center of the galaxy
approaches Newton’s definition. Therefore it is necessary to find coordinate systems, which
are sufficiently inertial for a particular application [Vallado and McClain, 2007, p.153].
Probably the best realization of an inertial frame in our solar system is the International
Celestial Reference Frame ICRF (when relativistic effects can be neglected, otherwise

3’coordinate frames’ and ’coordinate system’ are often used interchangeable (like in this document), nev-
ertheless there is a difference. In [Vallado and McClain, 2007, p.153] is a footnote about this two expressions.
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the Barycentric Celestial Reference System has to be considered). The origin is the Solar
System Barycenter. Far stars measured by VLBI4 are used to provide the orientation.
The International Astronomical Union IAU provides definitions and transformation equa-
tions for various coordinate systems.

In OSTK the function updateCoordSys(...) in sim.cpp is responsible to setup all coor-
dinate frames at a particular time.

4.6.1 Earth-Centered Coordinate Systems

GCRF: Geocentric Celestial Reference Frame

This coordinate frame is the standard inertial frame of the Earth and sufficiently inertial
for satellite’s orbiting the Earth. The origin is at Earth’s center. In earlier times the x-
axis pointed towards the vernal equinox. However, the vernal equinox is not fixed and
moves slowly over time due to precision and nutation. If a coordinate system is defined
with principal direction towards the vernal equinox, an epoch (time) has to be chosen as
reference. Newer realizations of the GCRF provided by the IAU do not use the vernal
equinox anymore. Further information can be found in [Vallado and McClain, 2007], the
IAU-2000 resolution and [McCarthy, 2004]. The equations of motion in OSTK are integrated
in this frame. Relativistic effects are not considered yet in OSTK, but they have non-
negligible effects for geodesy applications. Equations for relativistic corrections can be found
in [Torsten Mayer-Gürr, 2006, eq. 3.82] and [McCarthy, 2004, 10.3, eq.1]. The GCRF is the
space-fixed frame in OSTK.

ITRF: International Terrestrial Reference Frame

This frame origins at the geocenter and is the Earth-fixed frame in OSTK. In general this
frame is connected to the Earth’s topographic shape, measured by various stations on Earth
(and influenced e.g. by tectonic motions). The x axis points towards the intersection between
prime meridian and equator and the z-axis is nearly aligned with z-axis of the GCRF frame.
The y-axis supplements this right-handed coordinate system. The transformation between
GCRF and ITRF frame involves only rotation. Three methods are actually implemented:

� IAU-2000: considering polar motion, nutation, precession and LOD (external file)5.
The IAU SOFA library is used to calculate the rotation matrices.

� simplfied rotation: only a rotation around z-axis with angle α in rad:

α = MJD · 86400.0 · 7.29211585531 · 10−5 + 5.133658456

where MJD is the modified Julian Date. This method is useful due to simplicity of
the equation, thus simulated data can be compared easier in collaborations.

� no earth rotation; useful for validation of enery conservation of a spacecraft.

The angular acceleration is set to zero in every case. The ITRF orientation at a particular
time is updated using this line:

GCRF2ITRF.set(NullState, RotationMatrix, VecOmega, NullVec, Time);

4.6.2 Satellite-Centered Coordinate Systems

sGCRF: shifted GCRF

The shifted GCRF origins at the CoM of the satellite. It provides the frame to integrate
the equations of rotation. The quaternion state vector, which describes the attitude of the
satellite, refers to this system. The OSTK command to update the COF instance is

sat[n].GCRF2sGCRF.set(sat[n].CoMStateVec, UnityMatrix, NullVec, NullVec, Time);

4Very Long Baseline Interferometry
5Earth Rotation Parameter data: http://www.iers.org/IERS/EN/DataProducts/

EarthOrientationData/eop.html

http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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RSW

This coordinate frame is located at the satellite’s center of mass. The x-axis points towards
the Earth’s center (Nadir direction), the z-axis is the cross-product of x-axis and velocity
vector. Hence the velocity vector and the y-axis are nearly aligned (Along-Track axis).
Because the velocity vector of the satellite and the Nadir direction are only perpendicular
for circular orbits, both vectors can not create an orthonormal system (in general). The
realization is done using a TriadStateMat. Let ~r denote the satellite’s CoM position. We
define ~q and time derivatives as follows (and write them in a matrix)6:

Q̂ = [~q, ~̇q, ~̈q] =

← ~̇r →
← ~̈r →
0 0 0

 (4.94)

The matrix P̂ is defined as

P̂ = [~p, ~̇p, ~̈p] =

← −~r →
← −~̇r →
← −~̈r →

 (4.95)

Then the RSW frame is updated using this three lines of code:

newTriadStateMat(Q, P, TriadStateMat)

changeTriadStateMatAxes(TriadStateMat,’yxzz’,TriadStateMat);

sat[n].GCRF2RSW.set(sat[n].CoMStateVec, TriadStateMat, Time);

NTW

This frame is similar to the RSW frame. The difference is, that the y-axis is aligned with
the velocity (In-Track axis), and the x-axis has nearly nadir direction.

newTriadStateMat(P, Q, TriadStateMat)

sat[n].GCRF2NTW.set(sat[n].CoMStateVec, TriadStateMat, Time);

Q̂ and P̂ are like in the section before.

BFS: Body Fixed System

The origin of the BFS is the CoM of the satellite. The orientation is given by the satellite’s
attitude , which is described with the quaternion state vector ( q

−→
, q̇
−→

, q̈
−→

). The quaternions

refer to the sGCRF frame.

sGCRF2BFS.set(NullVec, sat[i].BFSQuatStateVec, Time);

Usually, the x-vector points to the front of the satellite (velocity direction), y-axis is to the
left and z-axis in negative nadir direction.

PAS: Principal Axes System

The principal axis system is usually fixed w.r.t. the BFS system, except the mass distribution
of the satellite changes. Therefore only the timestamp of the COF instance is updated:

BFS2PAS.set(Time);

The orientation of the PAS system is set, when the moment of inertia tensor is calculated
(cf. sec. 6.4.1 about 3d S/C models).

BFS2PAS.set(NullVec, PASdirection, NullVec, NullVec, Time);

6~̈q is set zero, because
...
~r is not computed in OSTK. Hence it is not possible to calculate the angular

acceleration ~̇ω for this coordinate system. The RSW and NTW coordinate system transformations can not
transform accelerations properly (the tangential acceleration will be zero
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4.6.3 Summary

With the introduced methods and formulas OSTK is able to transform vectors and their
first and second time derivatives, as well as tensors of second kind like MoI oder gravity
gradient tensor to arbitrary coordinate systems. As example a state vector ~P = (~p, ~̇p, ~̈p)
given in the satellite’s principal axes system, can be transformed (physically correct) to the
ITRF system with:

BFS2PAS.NEW2OLD( P, P );

sGCRF2BFS.NEW2OLD( P, P );

GCRF2sGCRF.NEW2OLD( P, P );

GCRF2ITRF.OLD2NEW( P, P );

For the future relativistic effects could be considered in the transformations. This would be
probably helpful for the simulation of precise LISA orbits.
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Chapter 5

Earth’s Gravity Field

The Earth’s gravity field has the most important influence on the trajectory and attitude.
In this chapter the models to simulate the Earth’s gravity field are introduced and the
equations are summarized.
The gravity field is not constant and the contributions can be divided into the following
categories:

� static or slow changing gravitational field,

� time-independent tide contribution,

� time-dependent solid Earth tides,

� ocean tides,

� atmospheric tides,

� loading effects due to atmosphere and oceans ,

� residuals or short-time variations.

Before describing the models I first want to emphasize the following two definitions.

5.1 Gravity and Gravitation

In the terrestrial case the gravity1 acceleration ~g is the sum of gravitational acceleration ~v
and centrifugal acceleration ~f [Torge, 1989]. Former is due to the presence of mass, latter
due to the Earth’s rotation around the z-axis (in Earth-fixed frame). Both accelerations are
conservative and can be expressed as a gradient of a potential:

V = G

∫
V

ρ(~r′)
|~r − ~r′|

d3r′, ~v = ~∇V (5.1)

As usual in geodesy the acceleration ~v and potential V are connected without minus sign.
This potential can be rewritten as a spherical harmonic (SH) expansion as long as it obeys
Laplace’s equation (App. B.2, eq. (B.76)):

V (r, ϕ, θ) =
GM

r
·
∞∑
l=0

l∑
m=0

(a
r

)l
P̄l,m(cos (θ)) · [cos (mϕ) · C̄l,m + sin(mϕ) · S̄l,m] (5.2)

where C̄l,m and S̄l,m are the normalized Stoke’s coefficients, which are derived in App. B.2
eq. (B.77) and eq. (B.77). GM is the product of gravitational constant and Earth’s mass,
whereby a is Earth’s mean radius. P̄l,m(cos (θ)) are the normalized associated Legendre
polynomials of degree l and order m. The normalizations are discussed in App. B.1.4.

1gravity and gravitation are forces, due to Newton’s Second Law F = m · a they are connected to the
acceleration

43
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The centrifugal acceleration is a pseudo-force, which occurs in a rotating frame, and can be
described with (cf. centripetal acceleration in sec. 4.3.4)

~f = ~ω × (~ω × ~r) = −~∇C = ω2

xy
0

 (5.3)

F = −ω
2

2
r2 sin(θ)2 = −ω

2

2
· (x2 + y2) (5.4)

whereas (r, ϕ, θ) are spherical and (x, y, z) cartesian coordinates in an Earth-fixed system.
The centrifugal acceleration vanishes at the poles and is maximal at the equator. Earth’s
angular velocity can be approximated using [Vallado and McClain, 2007, eq. 3-64, p. 27]

ω = 7.292 115 146 706 979 · 10−5 ·
(

1− LOD

86400

)
rad

s
(5.5)

where LOD is the length of day in seconds, as provided by the IERS. It is the difference
between the astronomical measured day length and 86400 SI seconds2. The change of the
Earth’s rotation axis can be neglected, so no other pseudo forces have to be taken into
account. The centrifugal potential is not harmonic

∆C = ~∇ · ~∇C = 2 · ω2. (5.6)

Thus it can not be expressed in spherical harmonics. A spherical harmonic expansion can
only describe the gravitational potential, not the gravity potential! Often these terms are
used interchangeable.

5.2 Static Gravitational Field

There are several Earth gravitational models in spherical harmonics expansion format avail-
able, for example the EGM96 model by NASA GSFC and NIMA [Lemoine, 1998]. Data
from several satellite missions and gravimetric ground measurements were used to calculate
C and S potential coefficients up to degree and order 360. In the recent years with CHAMP,
GRACE and GOCE the number of published gravitational models increased. GFZ and CSR
publishes monthly GRACE solutions3, and the ITG in Bonn4 provides even daily coefficient
sets. A tabular overview and download possibilities of EGM models since 1966 can be found
on the website of the International Centre for Global Earth Models (ICGEM)5. The defining
parameters for a gravitational potential model are:

� GM: gravitational constant times Earth’s mass: scaling factor in SH expansion,

� a: mean Earth radius, scaling factor in SH expansion,

� maxdeg: maximum degree & order of expansion,

� Tidesystem: Treatment of permanent tides,

� Normalization: used normalization for Cl,m and Sl,m coefficient (cf. B.1.4 ),

and the actual data is usually provided in a 6 column textfile with degree l, order m,
coefficient Cl,m and Sl,m and standard deviations or error estimations ∆Cl,m and ∆Sl,m.

5.2.1 Geoid and Ellipsoid

The geoid is an equipotential surface of the Earth’s gravity field, which bests fit the mean
sea level (MSL). The ellipsoid (International Reference Ellipsoid) is a best-fitting oblate
ellipsoid of Earth’s shape (or MSL) [Lowrie, 2009]. There are two ellipsoids common:

2Système international d’unités (International System of Units)
3http://podaac.jpl.nasa.gov/grace/data_access.html#Level2
4http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010#content12
5http://icgem.gfz-potsdam.de/ICGEM/modelstab.html

http://podaac.jpl.nasa.gov/grace/data_access.html#Level2
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010#content12
http://icgem.gfz-potsdam.de/ICGEM/modelstab.html
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� WGS84: The US-Department of Defense World Geodetic System was defined in
1984 by the NIMA [NIMA, 2004]. Several modifications have been performed in the
past years. The actual defining parameters of this ellipsoid are: semi-major axis a =
6378137.0 m, flattening 1/f = 298.257223563 , Earth’s GM = 3986004.418 ·108 m3/s2,
Earth’s angular velocity ω = 7292115 · 10−11 rad/sec. This ellipsoid is used for the
Global Positioning System (GPS).

� GRS80: A slightly different ellipsoid is defined in the Geodetic Reference System 1980:
a = 6378137.0 m, flattening 1/f = 298.257222101 , Earth’s GM = 3986005 ·108 m3/s2,
Earth’s angular velocity ω = 7292115 · 10−11 rad/sec.

With respect to an ellipsoid it is possible to calculate geoid undulations (in meter) of an
Earth gravitational potential model (one assumes that the centrifugal potential on the
geoid and on the ellipsoid are equal, hence they cancel out). The geoid shape in meters can
be approximately6 calculated with [Wahr et al., 1998]

N(ϕ, θ) = V (r, ϕ, θ)
r · a
GM

(5.7)

= a

∞∑
l=0

l∑
m=0

P̄l,m(cos θ) · [cos (mϕ) · C̄l,m + sin(mϕ) · S̄l,m] (5.8)

and the geoid undulation is the difference between geoid shape and ellipsoid shape. A
(small) change ∆ in the geoid can be approximately expressed in geoid undulation or in
Equivalent Water Height (EWH), which is sometimes called Equivalent Water Thickness
[Wahr et al., 1998]:

NEWH(ϕ, θ) =
a ρave

3 ρwater

∞∑
l=0

l∑
m=0

2l + 1

1 + kl
P̄l,m(cos θ) · [cos (mϕ) ·∆C̄l,m + sin(mϕ) ·∆S̄l,m]

(5.9)

[N ] = meter (5.10)

where ρave ≈ 5517 kg/m3 is Earth’s mean density, ρwater = 1025 kg/m3 is the water density
and kl are the frequency independent load Love numbers (named after A. E. H. Love). A
spatial geoid undulation plot in units of EWH describes how thick a layer of water on the
geoid has to be, to cause this geoid undulation (it takes also the loading deformation into
account and is the same as the later introduced ocean tide height). The product Nwater(ϕ, θ)·
ρwater has unit of mass per surface, and describes the necessary surface pressure on the
geoid, to produce this undulation. For further information on this topic, e.g. mathematical
description and methods, refer to: [Martin Losch, 2003, e.g. accurate geoid undulation
formula], [Smith, 1998] and [Wahr et al., 1998]. These two simplified examples (loading
effect neglected) should illustrate the effect and magnitudes of geoid undulations. To produce
a global geoid undulation7

� 1 mm, the global Earth surface has to be loaded with ≈ 1 kg/m2

� 1 cm, the global Earth surface has to be loaded with ≈ 10 kg/m2.

However, the spatial pattern of geoid undulation and EWH can deviate significantly, due
to the loading effect. Further it is important to notice, that the Stoke’s coefficient C and S
are a spectral representation of the geopotential, while geoid (undulations) represent spatial
informations. Often both representations provide useful information.

5.2.2 Tide Systems

The geopotential models, the geoid and the ellipsoids are (or can be defined) with respect
to a particular permanent tide system, while the geoid undulations are independent from
the tide system [Smith, 1998]. This statement is not true, if the ellipsoid is only defined by
semi-major axis a and flattening f (and without tidesystem) [Lemoine, 1998, eq. (11.1-1)].
There are three tide systems common:

6a more sophisticated formula has the latitude dependent normal gravity (ellipsoidal gravity) as prefactor
and does not assume a = r

7a layer of water is assumed, which directly increases the MSL
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� Tide-free (or non-tidal): This geoid would exist for a tide-free Earth with all (direct
and indirect) effects of the Sun and the Moon removed.

� Mean Tide: This geoid would exist in the presence of the Sun and Moon (or, equiv-
alently, if no permanent tidal effects are removed)

� Zero Tide: This geoid would exist if the permanent direct effects of the Sun and Moon
are removed, but the indirect effect component related to the elastic deformation is
retained.

The attraction of Sun, Moon and other planets causes a non-zero permanent deformation
of the Earth’s crust (cf. sec. 5.3.1).

Figure 5.1: Treatment of observations for tidal effects in the geopotential [from McCarthy
2004, IERS Conventions 2003, p. 11]

The figure 5.1 shows the procedure in handling tides in geopotential models. The mean tide
system has averaged tides and is close to instantaneous observations (e.g. measured with a
gravimeter on the Earth’s surface). For the purpose of OSTK, where the direct gravitational
acceleration due to a 3rd celestial body can be considered, the zero or the tide-free systems
are appropriate (depending on the used solid earth tide and ocean & atmospheric tide
model).
Fortunately, the transformation between permanent tide systems is very easy, because only
the C̄2,0 coefficient is affected significantly8. The formulas for the Earth are [Martin Losch, 2003,
eq. (16)+(17)] and [McCarthy, 2004, eq. (11)+(12)]:

C̄mean
2,0 − C̄zero

2,0 = 4.4228 · 10−8 · (−0.31460) (5.11)

C̄mean
2,0 − C̄free

2,0 = (1 + k2,0) · 4.4228 · 10−8 · (−0.31460) (5.12)

8one of the coefficients responsible for the oblateness of the Earth; the C̄l,0 coefficients are responsible
for the oblatenes
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where k2,0 is the zero frequency Love number. These equations are implemented in the
function shown in Listing 5.1.

Listing 5.1: tegmtides::get permC20Bias in iersSET.cpp� �
// ! g e t permanent t i d e C 2 ,0 b i a s f o r d i f f e r e n t t i d e t r an s f o rma t i on s
/* !
* Converts C2 ,0 c o e f f i c i e n t s from one t i d e system in t o another t i d e system :
* j u s t add the re tu rn va l u e to the C20−c o e f f i c i e n t and you g e t t he new

t i d e s y s t em
*

* l i t e r a t u r e : [How to Compute Geoid Undu la t ions . . . ] by Martin Losch , eq . 16 +
17

* l i t e r a t u r e : IERS TN 32 , p . 67 , eq . 11
*

* @param [ in ] from eTideSystem o f c o e f f i c i e n t s
* @param [ in ] to eTideSystem you want
* @param [ in ] k20 k20 − Earth cons tan t
* @return b i a s f o r the c o e f f i c i e n t s C20 ( to add )
*

*/
l doub le tegmtides : : get permC20Bias (

eTideSystem from ,
eTideSystem to ,
l doub le k20 ) ;
� �

5.2.3 Including new Earth Geopotential Models (EGM) in OSTK

Including new EGM models is very easy. One has to copy the data text file with l, m, C,

S and optional standard deviations of C and S columns to the directory externdata/. Then
two lines have to be added with the keyword “settings:” for the defining parameters, and
“coeff:” for the starting the coefficients data, thus the file looks like:

# comment lines

# Defining Parameters:

# Model Name, GM value, ‘‘a’’-radius value, tide-system (zero, free,

# mean, none), normalization (4pi/semi)

#

settings: ggm03c 398600.44150E+09 6378136.30 zero 4pi

# l degree , m order , C, S, std-dev-C, std-dev-S

coeff:

2 0 -4.841693259705E-04 0.000000000000E+00 4.68460E-11 0.00000E+00

2 1 -2.189810040712E-10 1.467451636117E-09 7.75160E-12 7.81670E-12

2 2 2.439349093502E-06 -1.400284857733E-06 7.80670E-12 7.80760E-12

3 0 9.572141520460E-07 0.000000000000E+00 9.83230E-12 0.00000E+00

3 1 2.030465664514E-06 2.482058936058E-07 4.49800E-12 4.50570E-12

3 2 9.047902456370E-07 -6.189883025458E-07 6.75280E-12 6.75280E-12

....

Finally the configuration file has to be adopted to load the new model with this line:

# read EGM coefficients (parameter: maximum degree & file)

read egm = 85 externdata/egm96.dat

5.2.4 OSTK class tSHmodels in SHmodels.h

To simplify handling with spherical harmonic expansions of gravitational and geomagnetic
potential fields, the class tSHmodels was implemented. An instance of this class can store
the defining parameters (GM, radius a, tidesystem,...) as well as the (gravitational) Stokes’
coefficients or (geomagnetic) Gauss’ coefficients, as shown in figure 5.2. The coefficients
have to use the geodesy 4π-normalization (App. B.1.4) to be compatible with the associated
Legendre Polynomials. Eventually a re-normalization has to be performed during loading
procedure (the Gauss’ coefficients are usually Schmidt semi-normalized). Furthermore this
class provides methods to calculate spherical and cartesian first and second order derivatives
of the potential. To obtain these, two methods can be used:

� calculating spherical derivatives and converting them to cartesian, as described in App.
B.3 and in App. B.4
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� direct calculation in cartesian coordinates with a method proposed in App. B.5

For these methods the associated Legendre polynomials and possibly Petrovaskaja Coef-
ficients have to be calculated and stored. However, this class basically wraps low-level
functions. Every Earth gravitational model, that is loaded in OSTK, is stored in an in-
stance of this class.

Figure 5.2: Overview of the C/C++ class to handle spherical harmonic expansions

5.2.5 Practical Considerations

I recommend to use only one GM value and one Mean Earth radius a as scaling factor and
only one tidesystem for the EGM models, otherwise difficulties may arise, while comparing
or summing C and S coefficients from different sources. In OSTK reference parameters are
defined in constants.h:

EARTH GM = EARTH EGM96 GM = 398600.44180 · 109 m3/s2 (5.13)

EARTH A = EARTH EGM96 A = 6378137.00 m (5.14)
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When C and S coefficients are loaded (using methods in filetemplates.cpp or in AOD1B.cpp),
they are always re-scaled using these equations:

Cl,m(new) =
GM

EARTH GM

( a

EARTH A

)l
Cl,m(old) (5.15)

Sl,m(new) =
GM

EARTH GM

( a

EARTH A

)l
Sl,m(old) (5.16)

Hence, all Stokes’ coefficients have the same scaling factor GM and a. The disadvantage is,
that in general the monopole coefficient C0,0(new) 9 is only nearly 1. OSTK calculates the
Earth’s monopole acceleration using the potential

V(r) =
EARTH GM

r

For very accurate simulations it is recommended to adapt the reference GM and a values to
the actual used geopotential model. The permanent tide system of Earth’s static geopoten-
tial models is automatically converted to the zero tide system using the methods previously
described.

5.3 General Tide Theory

In this section the basics concepts of tidal theory are introduced, which are necessary to
understand the equations of the tidal models.

5.3.1 Tide Generating Potential TGP

Let us assume two coordinate systems: the ICRF frame, which originates at the solar
system barycenter and is a nearly inertial frame (neglecting relativistic effects), and the
pseudo inertial GCRF frame with origin at the geocenter. For simplicity, we consider the
axes of both systems are fixed and have the same orientation. A second celestial body with
position ~P , like the Moon or Sun, will cause an acceleration of the GCRF origin towards ~P :

~̈O|ICRF (GCRF ) =
GMp

|~P|GCRF |3
~P|GCRF (5.17)

For the acceleration at position ~r follows from the general acceleration transformation for-
mula (in sec. (4.3.4))

~̈r|ICRF = ~̈r|GCRF + ~̈O|ICRF (5.18)

⇔ (5.19)

~̈r|GCRF = ~̈r|ICRF − ~̈O|ICRF (5.20)

=
GMp

|~P|ICRF − ~r|ICRF |3
(~P|ICRF − ~r|ICRF )− GMp

|~P|GCRF |3
~P|GCRF (5.21)

= GMp

(
(~P|GCRF − ~r|GCRF )

|~P|GCRF − ~r|GCRF |3
−

~P|GCRF

|~P|GCRF |3

)
(5.22)

This acceleration due to another planet in the GCRF frame is also called (direct) tidal
acceleration and the direction on Earth’s surface is shown in fig. 5.3.1.

The potential of this acceleration is called the Tide-generating Potential TGP [Wenzel, 1997,
eq.3]10:

V (~r) = GMp

(
1

|~P − ~r|
− 1

|~P |
− |~r| cos(Ψ)

|~P |2

)
with Ψ = ∠(~P ,~r) (5.23)

9corresponds to the acceleration due to a point mass
10the second term will vanish, if we differentiate V w.r.t. ~r
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Figure 5.3: Tidal acceleration [from Tide-Generating Potential for the Earth, Hans-Georg
Wenzel, 1997]

It is harmonic and can be expressed in terms of Legendre-Polynomials [Wenzel, 1997, (eq.4)],
[Baur, 2002, (2.3)] or [Vallado and McClain, 2007, p. 573], very similar to the method de-
scribed in App. B.2,

V (r, θ, ϕ) =
GMp

p

∞∑
l=2

(
r

p

)l
Pl(cos(Ψ)) (5.24)

where we used spherical coordinates p = |~P | and ~r = (r,Θ, ϕ). Furthermore, the potential
can be written like a spherical harmonic expansion

V (r, ϕ, θ) =
GMp

p

∞∑
l=2

l∑
m=0

(
r

p

)l
1

2l + 1
P̄l,m(sin(δp))P̄l,m(sin(θ)) cos(m(ϕ− ϕp)) (5.25)

where δp is the declination and ϕp the longitude of the celestial body P . The l = 2, m = 0
term has a non-negligible celestial body independent part (under the assumption p = const.).
This part is the permanent tide contribution [Baur, 2002, eq. (2.14)]

Vperm,p(r, θ, ϕ) =
GMp · r2

4 · p3

(
1− 3 sin2(θ)

)
(5.26)

and causes the change of the C2,0 Stokes’ coefficient in section 5.2.2.

5.3.2 Spectral Analysis

The potential in eq. (5.25) is time-dependent, because the planetary position δp and ϕp is
time-dependent. A spectral analysis of the TGP shows, that the main contributions in the
TGP are caused by discrete frequencies ωs [Wenzel, 1997] or [Torsten Mayer-Gürr, 2006, p.
28]. Hence the TGP can be split up into single tide constituents, the tidal waves s with
frequency ωs (cf. Fourier series):

V (r, ϕ, θ) = Re

[
GMe

a2

∞∑
l=2

l∑
m=0

∑
s

(a
r

)l+1

Hlms(ωs) Yl,m(θ, ϕ) ei(ωst)

]
(5.27)

where GMe and a are the parameters of the Earth, Yl,m the Spherical Harmonics, and
Hlms(ωs) is the amplitude of the tidal wave s. This is the Cartwright-Edden-Tayler expan-
sion [Baur, 2002]. The amplitude describes the vertical height change of the equipotential
surface.

The frequencies ωs can be related to the Delaunay variables

� l: mean anomaly of the moon
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� l′: mean anomaly of the sun

� F : mean argument of latitude of moon

� D: mean longitude of the ascending node of the moon

and mean longitudes of the planets ΩMoon,ΩSun, ... which are used in earth’s nutation
theory, e.g. IAU-2000 in [McCarthy, 2004, chapter 5], or lunar orbit theory. These variables
are (usually) given as polynomial expressions of time [Simon et al., 1994] and can also be
used to calculate approximated planetary ephemeris. They have the dimension of radian
(or degree) and are often referred to as astronomical fundamental arguments. The OSTK
method in Listing 5.2 can be used to calculate the values for a particular time.

Listing 5.2: emgtides.h� �
// ! c a l c u l a t e fundamenta l arguments
/* !
* de launay v a r i a b l e s l , l ’ , F , D
* and moons mean l o n g i t u d e
*

* a l l r e s u l t s in rad ian and bounded to (−pi , p i ]
*

* − fundamenta l arguments are used in t i d e mode l l i n g
*

* t h eo ry :
* [ Simon e t a l . 1994: Prece s s ion formulae and mean e l ements o f p l a n e t s ]
* [ Daubrawa : Bahnstoerungen durch Ozeangeze i t en ]
*

* @param [ in ] JD Ju l i an Date T e r r e s t r i a l Time
* @param [ out ] fundarg [ 0 ] mean anomaly o f t he moon l
* @param [ out ] fundarg [ 1 ] mean anomaly o f t he sun l ’
* @param [ out ] fundarg [ 2 ] mean argument o f l a t i t u d e o f t he moon
* @param [ out ] fundarg [ 3 ] mean l o n g i t u d e o f ascend ing node o f t he moon D
* @param [ out ] fundarg [ 4 ] mean l o n g i t u d e o f moon Omega moon
*

*/
void fundamentalarguments ( const ldoub le JD TT, l doub le fundarg [ 5 ] ) ;
� �
However, for the description of tides another variable set is more convenient, which can
be derived directly from the fundamental arguments. These variables are called Doodson
elements, named after Arthur Thomas Doodson. This parameter-set consists of six variables:

� τ = (GMST+π−s) is the mean lunar time + 12 hr with a frequency of ≈ 14.49 deg/hr
or a period of ≈ 1.035 d,

� s = (F + Ωmoon) is the mean lunar longitude with a frequency of ≈ 0.55 deg/hr or a
period of ≈ 27.322 d,

� h = (s−D) is Sun’s mean longitude with a period of ≈ 1 yr,

� p = (s− l) is the mean longitude of Moon’s mean perigee with a period of ≈ 8.847 yr,

� N ′ = (−Ωmoon) is Sun’s mean longitude with a period of ≈ 18.613 yr,

� ps = (s−D − l′) is Sun’s mean perigee longitude with a period of ≈ 20936 yr,

where GMST is the Greenwich Mean Sidereal Time. The frequencies and periods refer
to the J2000.0 epoch (01.01.2000, noon, Terrestrial Time) and are the first derivatives of
the Doodson Elements evaluated at J2000.0 epoch. It will be convenient to write these
time-dependent Elements in a vector

~D(t) = (τ, s, h, p,N ′, ps)
T (5.28)

Another vector

~K(s) = (k1, k2, k3, k4, k5, k6)T (5.29)

consisting of six integer numbers and with dependency on the tidal wave s, allows the
calculation of phase and frequency for every tidal wave:

ωst = ~K(s) · ~D(t), (5.30)

ωs = ~K(s) · ~̇D(t). (5.31)
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Listing 5.3: emgtides.h� �
// ! c a l c u l a t e Doodson Elements
/* !
* use the fundamenta l arguments to c a l c u l a t e doodson
* e l ements
*

* t h eo ry :
* h t t p :// en . w i k i p e d i a . org / w i k i /Arthur Thomas Doodson#Doodson Numbers
* [ Daubrawa : Bahnstoerungen durch Ozeangeze i t en ] p .13
*

* @param [ in ] t ime . JD TT j u l i a n da te t e r r e s t r i a l t ime
* @param [ in ] t ime .GMST Greenwich Mean S i d e r e a l Time
* @param [ out ] DoodsonElements ( tau , s , h , p , N ’ , p s )
*/

void ca l c doodsone l ements ( const t t imepo in t ex t time , l doub le DoodsonElements [ 6 ] ) ;
� �
Because the ki can be negative, the tidal constituents are expressed in a Doodson Code, a
format like ’273.555’, where every digit is simply related to the ki number:

d1d2d3.d4d5d6 = (k1)(k2 + 5)(k3 + 5).(k4 + 5)(k5 + 5)(k6 + 5)

The Doodson Code of a tidal wave consists of six positive integers. However, the first
Doodson Element τ has the highest frequency of about 1 day, hence the first Doodson
Code digit d1, which is multiplied with τ , can be used to classify the tidal waves into
[Wenzel, 1997]:

� d1 = m = 0: long periodic waves with period of 14 day up to 18.6 years which have a
maximum at the poles

� d1 = m = 1: diurnal waves with period of about 24 hr which have a maximum at
±45◦ latitude

� d1 = m = 2: semidiurnal waves with period of about 12 hr which have a maximum at
the equator

� d1 = m = 3: tertidiurnal waves with period of about 8 hr

where the fact was used that m (in “m(ϕ−ϕp)“) of eq. (5.25) has approximately the same
effect as d1.

5.3.3 Tidal catalogs

In the last century several TGP catalogs consisting of Doodson numbers and amplitudes
were derived (according to [Kudryavtsev, 2005])

� Doodson 1921: 381 tidal waves,

� Cartwright & Tayler 1971,

� Cartwright & Edden 1973,

� Büllesfeld 1985,

� Xi 1987 & 1989,

� Tamura 1987 & 1995,

� Hartmann & Wenzel 1995: 12935 tidal waves [Hartmann and Wenzel, 1995],

� Roosebeck 1996,

� Kudryavtsev 2005: ≈ 27000 tidal waves, for a period of 2000 years [Kudryavtsev, 2005].

At least the catalogs of Kudryavtsev and Hartmann & Wenzel consider also the Earth’s flat-
tening effect, which corrects the tidal potential to Earth’s ellipticity (for further information
see [Dahlen, 1993]).
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5.3.4 Hartmann & Wenzel Potential Catalog: HW95

This TGP model consists of a catalog of 12935 tidal waves, which are located in the file
/externdata/hw95s.dat. Contributions due to Moon, Sun, Mercury, Venus, Mars, Jupiter
and Saturn are considered. The model data is read-in using the function loadf hw95(...)

in filetemplates.cpp . The catalog is stored in the datalyzer tegmtides.hw95. The
acceleration due to the TGP at a particular time and position can be calculated using the
method tegmtides.calc hw95tide deriv(...) in hw95.cpp . This model assumes a rigid
Earth, which has no elastic tide deformations. Although the effects of the TGP on satellites
can be modeled using the direct 3rd body acceleration, this model can be (probably) adpoted
to simulate solid Earth tides of an elastic or anelastic earth by introducing Love numbers.

5.4 Solid Earth Tides

The Earth reacts to the tide generating potential TGP with deformations. This mass re-
distribution induces a change of the geopotential. Mathematically this can be described by
introducing Love numbers kl.m.s in eq. (5.27)

V (r, ϕ, θ) = Re

[
GMe

a2

∞∑
l=2

l∑
m=0

∑
s

(a
r

)l+1

kl,m,s Hl,m,s(ωs) Yl,m(θ, ϕ) ei(ωst)

]
(5.32)

An elastic Earth model reacts directly (without time-shift) to the TGP, hence the kl.m.s are
real numbers and no phase-shift will occur in ei(ωst). Another difficulty arises through the
fact, that the Love numbers are frequency dependent.

The method proposed in section 5.4.2 uses at first frequency independent Love numbers
(independent of the tidal wave s)

kl,m = kl,m,s

and corrects in the next step for the frequency dependency using this Love numbers:

δkl,m,s = kl,m,s − kl,m

5.4.1 Rizos/Stolz method

One simple formula to calculate the solid earth tide acceleration due to Moon or Sun is given
in [Rizos and Stolz, 1985] by

~̈r =
k2,0

2

GMb

|~Rb|3
a5

|~r|4

(
(3− 15 cos(Θ)2)

~r

|~r|
+ 6 cos(Θ)

~Rb

|~Rb|

)
(5.33)

Θ = ∠(~R, ~Rb) (5.34)

with Earth’s Love number k2,0, a the Earth’s mean radius and b denoting either Moon or
Sun. All vectors refer to the GCRF frame and the portions of Sun and Moon are added
up. In this model the Sun’s and Moon’s gravitational potential is equal to the potential of
a point mass. It has to be investigated if a permanent Earth tide contribution is included
in this equation. For GPS satellites at a height of about 20000 km the magnitude of this
acceleration is in the order of 10−9 m

s2 or about 0.5ma - 1.0m after integration time of two
days. However, this method provides no information about the gravity gradient, although
it is possible to differentiate this equation to obtain it. The implementation is as provided
in Listing 5.4.
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Listing 5.4: rizos.cpp� �
// ! S o l i d ea r t h t i d e a c c e l e r a t i o n based on the Rizos / S t o l z (1985) model
/* !
* Ca l cu l a t i on o f t i d e a c c e l e r a t i on , based on
* Rizos / S t o l z ’ Force mode l l i n g f o r GPS s a t e l l i t e o r b i t s ’ , 1985
*

* @param [ in ] satPosGCRF s a t e l l i t e p o s i t i o n in GCRF coo rd i na t e s
* @param [ in ] sunPosGCRF sun p o s i t i o n in GCRF coo rd ina t e s
* @param [ in ] moonPosGCRF moon p o s i t i o n in GCRF coo rd i na t e s
* @param [ out ] accGCRF r e s u l t i n g a c c e l e r a t i o n in GCRF
*

*/
void ca l c r i zo sSET ( const ldoub le satPosGCRF [ 3 ] ,

const ldoub le sunPosGCRF [ 3 ] ,
const ldoub le moonPosGCRF [ 3 ] ,
l doub le accGCRF [ 3 ] ) ;
� �

5.4.2 IERS Solid Earth Tide Model

This model is proposed in [McCarthy, 2004, ch. 6.1] and describes the calculation of correc-
tions ∆C̄lm and ∆S̄l,m for the normalized geopotential Stokes’ coefficients C̄lm and S̄lm up
to degree l = 4.

Step 1: Frequency Independent Tide Contribution

The frequency independent tide contribution of the TGP can be expressed in complex form
(for l = 2 and l = 3)

∆C̄lm + i∆S̄lm =
klm

2l + 1

3∑
j=2

GMj

GME

(
a

rj

)l+1

P̄lm(sin(θj)) e
imϕj (5.35)

where j = 2 denotes the Moon and j = 3 denotes the Sun. (rj , θj , ϕj) is the geocentric
position of the celestial body in spherical coordinates. GME and a are Earth’s parameters
and the klm are nominal (frequency independent) Love numbers (given in Table 6.1 in
[McCarthy, 2004]). They have an imaginary part, if an anelastic Earth Model is considered.
The complex equation can be rewritten as

CT :=

3∑
j=2

GMj

GME

(
a

rj

)l+1

P̄lm(sin(θj)) cos (mϕj) (5.36)

ST :=

3∑
j=2

GMj

GME

(
a

rj

)l+1

P̄lm(sin(θj)) sin (mϕj) (5.37)

∆C̄lm =
CT · Re(klm)− ST · Im(klm)

2l + 1
(5.38)

∆S̄lm =
ST · Re(klm)− CT · Im(klm)

2l + 1
. (5.39)

The l = 2 tides produces a contribution to the l = 4 term, which is taken into account by11

CT :=

3∑
j=2

GMj

GME

(
a

rj

)3

P̄2m(sin(θj)) cos (mϕj) (5.40)

ST :=

3∑
j=2

GMj

GME

(
a

rj

)3

P̄2m(sin(θj)) sin (mϕj) (5.41)

∆C̄4m =
CT ·Re(k+

2m)− ST · Im(k+
2m)

5
(5.42)

∆S̄4m =
ST ·Re(k+

2m)− CT · Im(k+
2m)

5
. (5.43)

where m = 0, 1, 2 and k+
2m is given.

11notice: the degree of the associated Legendre polynomials is 2, although the correction is for l = 4
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Step 2: Frequency Dependency Correction

In this step corrections due to different tidal waves have to be applied. A catalog of tidal
waves for the correction of (l = 2, m = 0), (l = 2, m = 1) and (l = 2, m = 2) co-
efficients is provided in Table 6.3 b), a), c) respectively. These data can be found in
/externdata/iersSET.dat. The file contains 71 tidal waves with the following columns:

� Name of the tide according to Darwin (1888)

� l.th degree of correction

� m.th order of correction

� Doodson-Code of tide

� δkr, the real part of the correction for the klm Love number

� δki, the imaginary part of the correction for the klm Love number

� in-phase (real) amplitude (ip), unit 10−12

� out-phase (imaginary) amplitude (op), unit 10−12

The data file is loaded into the memory during execution of the configuration file (config.txt)

# Read in tidal waves for IERS Solid Earth tide model

read iersset = externdata/ierSET.dat

The function loadf iersSET(...) in filetemplates.cpp is responsible for loading the
data into a datalyzer tegmtides.iersSET, where the Doodson Code is directly converted
to the ~K vector.

The formula for the C2,0 coefficient is 12

∆C̄2,0 =
∑

s=(2,0)

[ip · cos(ωst) + op · sin(ωst)] (5.44)

where the sum only considers tides with l = 2, m = 0. The Sl,0 coefficients are always zero
and can not be corrected. For the (l = 2, m = 1) degree and order the formula can be
written in real form as:

∆C̄2,1 =
∑

s=(2,1)

[ip · sin(ωst) + op · cos(ωst)], (5.45)

∆S̄2,1 =
∑

s=(2,1)

[ip · cos(ωst)− op · sin(ωst)], (5.46)

and for (l = 2, m = 2):

∆C̄2,2 =
∑

s=(2,2)

[ip · cos(ωst)− op · sin(ωst)], (5.47)

∆S̄2,2 =
∑

s=(2,2)

[−ip · sin(ωst)− op · cos(ωst)]. (5.48)

Step 3: Solid Earth Pole Tide

This effect is caused by the centrifugal effect of polar motion, and is taken into account with

m1 = xp − x̄p (5.49)

m2 = yp − ȳp (5.50)

∆C̄2,1 = −1.333 · 10−9 · (m1 − 0.0115 m2) (5.51)

∆S̄2,1 = −1.333 · 10−9 · (m2 + 0.0115 m1) (5.52)

where (xp, yp) are actual position of the Earth’s pole and (x̄p, ȳp) are mean values.

12The sign change in this formula in comparison to the original formula is due to the fact, that in table
6.3b) the negative amplitudes are given
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Step 4: Permanent Tide

The previous steps are designed to correct a geopotential model for the effect of solid earth
tide deformation, which is in the tide free system (not zero tide). If the geopotential model
is in the zero tide system, the C2,0 coefficient should be biased using the method proposed
in section . The following line of code provides the bias to change an C2,0 coefficient a the
system TDS, defined in sec. 5.2.2, to the tide free system:

∆C̄2,0 = get permC20Bias(TDS, Tidefree, k20) (5.53)

Summary

The previously described contributions ∆C̄lm and ∆S̄lm in every step have to be summed
up to obtain the final result and this can be stored in an instance of class tSHmodels in
SHmodels.h , like implemented in Listing 5.5.

Listing 5.5: egmtides.h� �
// ! c a l c u l a t e S o l i d Earth Tide d e f i n e d by [ IERS ]
/* !
* t h i s method c a l c u l a t e s the c o r r e c t i o n s f o r
* C and S c o e f f i c i e n t s as d e f i n e d by
* IERS 2003 Convent ions .
*

* The Co e f f i c i e n t s are s t o r e d in the SHmodel
* egmt ides : : iersSET
*

* @param [ in ] t ime
* @param [ in ] sunSpher ica lPosIJK Sun ’ s s p h e r i c a l ITRF Pos .
* @param [ in ] moonSphericalPosIJK Moon ’ s s p h e r i c a l ITRF Pos .
* @param [ in ] PoleParam Earth ’ s Pole Parameters
* @param [ in ] e l a s t i c e a r t h true , or f a l s e ( a n e l a s t i c )
* @param [ in ] TDS Tide System o f EGM model
*

*/
void tegmtides : : set IERS SET ( const t t imepo in t ex t time ,

const ldoub le sunSphericalPosIJK [ 3 ] ,
const ldoub le moonSphericalPosIJK [ 3 ] ,
const ldoub le PoleParam [ 4 ] ,
const eTideSystem TDS,
const bool e l a s t i c e a r t h )
� �

5.5 Ocean and Atmospheric Tides

Most of ocean’s water is considered in the static part of Earth’s gravitational field, but as
for example altimetry missions have shown, there are time-dependent variations of ocean’s
height in the order of 50 cm on free oceans and even higher in shallow water regions. This
height variations are effects of the TGP and they cause a geopotential change due to mass-
redistribution. Two effects have to be taken into account:

� the direct geopotential change due to presence or lack of tidal water mass,

� the deformation of Earth’s crust due to the presence or lack of tidal water mass

The same effects occur for the atmosphere’s mass.

In the past the prediction of ocean tides was very important especially for harbor cities
and naval use. In 1775 Laplace derived a set of nonlinear PDEs to describe water flux in
oceans for a barotropic case in two dimensions [Daubrawa, 2007], which are called Laplace’s
tidal equations (LTEs). Based on this George Howard Darwin derived in 1887 a tidal
model. He introduced also names for different tidal constituents, which are still in use.
[Schwiderski, 1980] published a global ocean tide model based on tidal gauge measurements,
which fulfilled the LTEs. Nowadays, data from altimetry, direct tidal gauges and gravita-
tional measurements are used to calculate global ocean tide models. The seperation of ocean
and atmosphere tide signals can be difficult when only satellite based gravity observations
are used.
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5.5.1 Harmonic Analysis

Under the assumption of linearity of the tidal gauge response on the TGP, one can separate
the total tidal gauge into single harmonic constituents, the tidal waves s [Baur, 2002][eq.
(3.17)]:

A(ϕ, θ, t) =
∑
s

As(ϕ, θ, t) =
∑
s

as(ϕ, θ) · cos(ωst+ χs + δs(ϕ, θ)) , [A] = m (5.54)

This equation describes the tidal height at a particular time and position on Earth’s sphere.
as(ϕ, θ) is the tidal amplitude, and the cosine term describes the time dependency. The
frequency ωs of the tide is equal to the frequency of the solid earth tide, but the ocean tidal
wave is shifted in phase δs(ϕ, θ). χs can be seen as a constant offset and will be defined in
the next sec. 5.5.2. However, this equation is very basic, every scalar field on a sphere can
be described with this equation. It can be expanded in spherical harmonics (as shown in
App. B.7):

A(ϕ, θ, t) =

∞∑
l=0

l∑
m=0

∑
s

P̄lm(sin(θ))

2l + 1
·

· [cos(mϕ)(sin(ωst+ ε+lms + χs) Ĉ
+
lms + sin(ωst+ ε−lms + χs)Ĉ

−
lms)

+ sin(mϕ)(cos(ωst+ ε+lms + χs) Ĉ
+
lms − cos(ωst+ ε−lms + χs)Ĉ

−
lms)] (5.55)

where the Ĉ+ and ε+lms are called the prograde wave amplitude and Ĉ− and ε−lms the retro-
grade wave. This notation follows Schwiderski 1983 [Baur, 2002]. The tidal amplitudes or
gauges are usually calculated on grids, with for example 1◦ × 1◦ resolution. The maximum
degree of the spherical harmonic expansion can be estimated with eq. (B.83) to

lmax =
180◦

α
(5.56)

The tidal height can be expressed as a geopotential change:

∆V (r, ϕ, θ, t) =
GM

r

4πa2

M
ρw

∞∑
l=0

l∑
m=0

∑
s

(a
r

)l
(1 + k′lm)

P̄lm(sin(θ))

2l + 1

[cos(mϕ)(sin(ωst+ ε+lms + χs) Ĉ
+
lms + sin(ωst+ ε−lms + χs) Ĉ

−
lms)

+ sin(mϕ)(cos(ωst+ ε+lms + χs) Ĉ
+
lms − cos(ωst+ ε−lms + χs) Ĉ

−
lms)] (5.57)

where ρw is the density of water (1025 kg/m3), the factor (4πa2)·ρw ·(
∑∑

...) is the product
of the Earth’s surface area, water density and tide height and thus similar to a “mass of the
tidal wave”. The factor (1 + k′l) accounts for the effect of direct gravitational potential as
well as for the loading effect (k′l: frequency independent load Love number). The corrections
∆C̄lm and ∆S̄lm of the normalized C̄lm and S̄lm coefficients are then [McCarthy, 2004, eq.
(15b)+(15d)]:

∆C̄lm = Flm
∑
s

sin(ωst+ ε+lms + χs) Ĉ
+
lms + sin(ωst+ ε−lms + χs) Ĉ

−
lms, (5.58)

∆S̄lm = Flm
∑
s

cos(ωst+ ε+lms + χs) Ĉ
+
lms − cos(ωst+ ε−lms + χs) Ĉ

−
lms, (5.59)

Flm =
4πa2ρw
M

1 + k′l
2l + 1

=
4πGρw
geM

1 + k′l
2l + 1

(5.60)

where G is the gravitational constant and ge the mean equatorial gravity. If the coefficients
Ĉ±lms are unnormalized, the prefactor is:

Flm =
4πGρw
geM

1 + k′l
2l + 1

√
(l +m)!

(2l + 1)(l −m)!(2− δlm)
. (5.61)
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5.5.2 Doodson-Wartburg Phase Correction χs

As explained, the total ocean tide contribution can be devided up into single tidal waves.
The main constituents are listed in table 5.2 and are responsible for about 90% of the
ocean tide signal13. The phase correction for these main tidal constituents is defined in the
following table 5.1. The first true condition (in the table) has to be used

Doodson Code Condition χs Darwin Name

165.555 +π
2 K1

055.565 π Om1

1xx.xxx −π2
0xx.xxx 0
2xx.xxx 0
4xx.xxx 0

Table 5.1: Doodson-Wartburg phase correction; x denotes an arbitrary digit

The following OSTK function returns the value for this correction:

Listing 5.6: egmtides.cpp� �
// ! r e t u rn s va l u e o f doodson−wartburg−pha s e co r r e c t i on
/* !
* r e f : e . g .
* [ Daubrawa : Bahnstoerungen durch Ozeangeze i t en ]
*

* @param [ in ] k s i x k parameters ( doodson−codes−o f f s e t )
* @return o f f s e t in [ rad ]
*/

l doub le tegmtides : : doodson phasecor rec t i on ( i n t k [ 6 ] ) ;
� �
The more general definition of χs is related to the sign of the amplitude in the TGP and on
the tidal band (longperiod, diurnal, semidiurnal)14 [McCarthy, 2004][Table 6.4].

period Darwin Name Doodson Code Doodson Elements Frequency caused by

long Om1 055.565 N ′ 0.002206 M
long Om2 055.575 2N ′ 0.004413 M
long Sa 056.554 h− ps 0.041067 S
long SSa 057.555 2h 0.082137 S
long Mm 065.455 s− p 0.544375 M
long Mf 075.555 2s 1.098033 M
long Mtm 085.455 3s− p 1.642048 M
long Msq 093.555 4s− 2h 2.113929 M

diurnal Q1 135.655 (τ − s)(s− p) 13.398661 M
diurnal O1 145.555 τ − s 13.943036 M
diurnal P1 163.555 τ + s− 2h 14.958931 S
diurnal K1 165.555 τ + s 15.041069 M+S

semidiurnal 2N2 235.755 2τ − 2s+ 2p 27.895354 M
semidiurnal N2 245.655 2τ − s+ p 28.439730 M
semidiurnal M2 255.555 2τ 28.984104 M
semidiurnal S2 273.555 2(τ + s− h) 30.000000 M
semidiurnal K2 275.555 2(τ + s) 30.082137 M+S

M4 455.555 4τ 57.968208 M

Table 5.2: Main tidal constituents; Frequency in degree / hour for J2000.0 epoch; M=Moon,
S=Sun

5.5.3 Model: FES2004

This model was computed using finite elements to solve the LTEs. The first version (FES94)
was a pure hydrodynamical model, newer versions like FES2004 use also data assimilation

13Torsten Mayer-Gürr: private communication
14and it is predestine to cause confusion and anger



5.5. OCEAN AND ATMOSPHERIC TIDES 59

[Lyard et. al., 2006]. The following tidal waves are considered: M2, S2, K2, N2, 2N2, O1,
P1, K1, Q1, Mf, Mtm, Mm, Msqm and M4. The solution is provided on a 0.125◦ × 0.125◦

grid and is state-of-the-art, as the figure 5.4 shows15 .

Figure 5.4: Summary table comparing the ten global tidal models to tide gauge data.
Mean and Root Mean Squared (RMS) differences are presented for amplitude and phase.
source:Applied Modelling and Computation Group, London

5.5.4 Model: EOT08a

For this model a thirteen year time series of different altimeter missions was processed to cal-
culate the tidal waves: 2N2, K1, K2, M2, M4, N2, O1, P1, Q1, S2 [Savcenko and Bosch, 2008].
The long-periodic tides (Om1, Om2, Sa, Ssa, Mm, Mf, Mtm, Msq) are adopted from
FES2004 model. This model should be more accurate in shallow water regions, especially
the new EOT10a version (which is not implemented yet). The FES2004 and EOT08a model
are implemented in OSTK.

5.5.5 Formats

To my knowledge the following formats for ocean tide models exist :

Format: Grids

The data is given on a worldwide grid with a particular resolution, usually in NetCDF format.
FES2004 grid data is available through AVISO16, the EOT08a model can be downloaded via
DGFI ftp17. Unfortunately the harmonic ansatz (5.54) is not applicable for long timescales18,
because the amplitude as well as the phase have long-periodic (18 yr) lunar perturbations.
Which is taken into account with the following formula for the EOT08a model 19:

A(ϕ, θ, t) =
∑
s

As(ϕ, θ, t) =
∑
s

f(t) · as(ϕ, θ) · cos(ωst+ us(t) + δs(ϕ, θ)) , [A] = m

(5.62)

For every latitude & longitude grid point a complex amplitudeH is provided. The magnitude
of H is the amplitude as(ϕ, θ), the phase of H is δs(ϕ, θ). The values f(t) and u(t) are the

15src: http://amcg.ese.ic.ac.uk/index.php?title=Local:Global_Tidal_Models
16http://www.aviso.oceanobs.com/index.php?id=1279
17ftp://ftp.dgfi.badw.de/pub/EOT08a
18it can be used when further longperiodic tidal waves are introduced
19Roman Savcenko DGFI; private communication

http://amcg.ese.ic.ac.uk/index.php?title=Local:Global_Tidal_Models
http://www.aviso.oceanobs.com/index.php?id=1279
ftp://ftp.dgfi.badw.de/pub/EOT08a


60 CHAPTER 5. EARTH’S GRAVITY FIELD

nodal factor and nodal angle. The computation of them is lengthy and burdensome and
can be found in [Schureman, 1958], [Pugh, 1987] or in the software [Flater, 2010]. OSTK
does not support grid formats, because this format is not appropriate to calculate potential
derivatives (accelerations).

Format: EPOS

This file in fortran-style format is for example used at GFZ. An official documentation of
this format is not available (to my knowledge), but the main structure can be deduced20.
The following parameters are provided after the keyword in this files:

� OTIDMOD: maximum degree & order, water density

� OTIDLDEF: load k′l numbers for every degree

� ATIDCOEF: Atmosphere tidal wave; Darwin name, Doodson code, degree l, order m,
normalization(-1 = 4π-normalized), prograde wave amplitude C+

lms in [cm], prograde
phase ε+lms in [deg] , retrograde wave amplitude C−lms in [cm], retrograde phase ε−lms in
[deg]

� OTIDCOEF: Ocean tidal wave constituent; parameters as in ATIDCOEF

The correction of the geopotential Stokes’ coefficients can be computed with eq. (5.58) -
(5.60). The normalization with Flm as well as the calculation of the Doodson-Wartburg
phase correction is performed once directly after loading the EPOS file.

OSTK class: tAOTEPOSmodels(...) in AOTmodels.h

This class is written to store the EPOS data, as well as to perform the calculation of
geopotential Stokes’ coefficients. An instance of class tSHmodels in SHmodels.h is used
to store the C and S coefficients. Hence acceleration and gravity gradient are easily obtained.
The vector<tidalwaves> contains informations like Doodson-Code and Doodson-Wartburg
phase correction about the used tides in the EPOS file.

20and was confirmed by private communication with Roman Savcenko, DGFI
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Figure 5.5: C/C++ class to handle atmospheric & ocean tide models in EPOS format

Implementation of EPOS-Models

In the config.txt the following line tells OSTK to load an EPOS file.

# Read Atmosphere-Ocean-Tide (AOT) model in EPOS format;

# name, maxdegree, filepath

read aotepos = EOT08aEPOS 60 externdata/EPOS-EOT08.dat

The function loadf aot epos(...) in filetemplates.cpp reads the data into memory
(datalyzers) and initializes the tAOTEPOSmodels instance properly. The model name (first
parameter) is used in the mission.txt to setup satellite’s with this model! In original EPOS
files a few OSTK header lines have to be added (they are self-explanatory).

Format: TMG

This format is called TMG (Torsten Mayer Gürr) in OSTK, because he computed and
provided these files to me (as well as the EPOS files, for EOT08a and FES2004). It consists
of a cos and a sin file per tidal constituent, with C and S coefficients in every file, hence four
numbers are provided (per degree, order and tidal wave): coslm c, coslm s, sinlm c, sinlm s.
The correction in the geopotential Stokes’ coefficients is calculated using this equation:

∆C̄lm =
∑
s

cos(ωst) coslm c+ sin(ωst) sinlm c, (5.63)

∆S̄lm =
∑
s

cos(ωst) coslm s+ sin(ωst) sinlm s. (5.64)
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This representation is equivalent to eq. (B.115) and (B.116). The advantage of this represen-
tation is, that no phase correction or Flm factor has to be applied, hence it is less error-prone
to implement. Also the computation is faster due to fewer mathematical operations.

OSTK class: class tAOTTMGmodels in AOTmodels.h

This class has the same intention as the previous one, but it is structured different. It uses
only the class tSHmodels in SHmodels.h to store the data in a vector<tidalwaves>.

Figure 5.6: C/C++ class to handle atmospheric & ocean tide models in TMG format

Implementation of TMG-Models

Because this format consists of different files, here the line in the config.txt the contains
a directory.

# Read Atmosphere-Ocean-Tide (AOT) model using TMG format;

# name, maxdegree, path

read aotepos = EOT08aTMG 60 externdata/EOT08a.gfc/

OSTK needs a file called tides in this directory, where a the tidal waves and correspond-
ing sin and cos files are specified. However, again the function loadf aot tmg(...) in
filetemplates.cpp reads the data into memory (datalyzers) and initializes the tAOTTMGmodels
instance properly. The model name (first parameter) is here also used in the mission.txt

to setup satellite’s with this model!

5.5.6 Admittance Theory

In EOT08a and FES2004 only major tidal constituents are provided, which explain about
90% of the tidal signal. It is possible to compute the the minor tidal constituents with
Admittance Theory. However, this method is complicated, basic introductions can be found
in [Baur, 2002]. It is not being considered to implement this method at present.
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5.6 Short-Term Variations: AOD1B De-Aliasing
Product

To consider residuals, uncertainties and short time mass-variations, for example caused due
to hydrology, recently support for the AOD1B data product was implemented in OSTK.
The documentation of this data product can be found in [Frank Flechtner, 2007]. Several
geo-data sources (like global surface pressure data provided by ECMWF21) are evaluated
to compute gravitational correction coefficients ∆Clm and ∆Slm every 6 hours. Daily data
files can be downloaded via ISDC22.

5.6.1 OSTK class: class tAOD1B in AOD1B.h

This class has the task to load the AOD1B data from files into memory (during simulation)
and to interpolate the ∆Clm and ∆Slm coefficients. The linearly interpolated data is stored
in an instance of the class tSHmodels in SHmodels.h , where it can be differentiated to
obtain the acceleration and gravity gradient.

Figure 5.7: C/C++ class to handle AOD1B data

5.6.2 Configuration

The data files have to be located in externdata/aod1b/ without any modification. The
configuration line can be found in the mission.txt:

# AOD1B data parameters: time, type, rate, use customtime, maxdeg

# name, maxdegree, path

set aod1b = UTC 01 01 2006 00 01 00 glo 3600 1 40

where

� UTC 01 01 2006 00 01 00: is a UTC date and time string, which has to be present.
This date and time can be used, if the data files are not available for the used simulation
time.

� type: defines the data type glo (global), ocn (ocean) or atm (atmosphere) as described
in [Frank Flechtner, 2007]

� 3600: interpolation rate in seconds. Here every 3600 seconds a linear interpolation
will be performed and new ∆Clm and ∆Slm will be computed.

21European Centre for Medium-Range Weather Forecasts
22http://isdc.gfz-potsdam.de

http://isdc.gfz-potsdam.de
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� 1: this one indicates, that the custom time should be used. If this flag is set to zero,
the data file of the actual simulation time will be used (or it will be tried, to use it).

� maxdeg: maximum degree of coefficients to consider

5.7 OSTK class: class tegmtides in egmtides.h

The class tegmtides in egmtides.h summarizes all models, that are implemented in
OSTK to simulate Earth’s gravitational field.

Figure 5.8: OSTK class responsible for dealing with Earth gravity models

5.8 Summary & Validation

With the shown models it is possible to simulate the Earth’s gravity field very accurately.
A comparison between real (e.g. GRACE) satellite ephemeris and OSTK ephemeris is out-
standing. The Ocean Tide models were validated with a matlab implementation provided
by Torsten Mayer-Gürr (ITG Bonn). The following geoid plots show the contribution due
to the different models at 20.03.2006 - 14:09:00 UTC. No correction of the center of mass
(first three coefficients) was applied.
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Figure 5.9: Static Gravitational Field

The most important part on satellite’s acceleration is of course due to the static part of
the gravitational field, which is shown fig. 5.9. At about 60◦ West and 40◦ South the
gravitational signal due to the Andes is visible. Pictured is the difference between geoid
shape and ellipsoid shape.

Figure 5.10: Solid Earth Tide

The next plot shows the geoid deformation due to solid Earth tides, which has correct shape
(cf. image 5.3.1). An Ellipsoid was not subtracted. The Moon has higher influence (in
comparison to the Sun) and is located at 151.4◦ W, 25.1◦ S. At the opposite side of the
Earth is the other bulge.
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Figure 5.11: Ocean Tides

The ocean tides have most of the signal over oceans (as expected). An Ellipsoid was not
subtracted.

Figure 5.12: AOD1B geoid plot; the used data file is from 01.01.2006 - 00:01:00 UTC

This plot is from the AOD1B De-Aliasing product and accounts for effects like hydrology.



Chapter 6

Modelling Satellites

This chapter describes approaches to model satellites. A satellite is in general a body,
consisting of material. It has a center of mass (CoM), an expansion and six degrees of
freedom (3 translation, 3 attitude or rotation). At first one can consider an idealized satellite
consisting only of a point mass with a particular position and velocity. However, a point
mass has no expansion and therefore no attitude. Furthermore forces which depend on the
satellite’s shape and on the surface area or surface properties, like the drag or solar radiation
pressure, can not be considered. This can be avoided by assigning static values to the point
mass e.g. a surface area or other parameters like a drag-coefficient and surface’s reflectivity.
Thus these effects can be approximatively considered. It is only approximatively because
the drag and solar radiation pressure are not depended on the total surface area of the
satellite, but on the cross-section area perpendicular to the air or photon flux, which is time
and position depended.

6.1 Surfaces

To improve the accuracy of the simulation the introduction of a 3-dimensional satellite model
is common. The satellite’s shape can be complex, therefore one can try to approximate the
(outer) shape by primitive elements like triangles (or quadrangles). In addition one can as-
sign surface parameters for every primitive surface like the reflectivity (diffuse, geometrical)
or absorption coefficients. The surface properties for the GRACE satellites can be found in
[Srinivas Bettadpur, 2007, p.22].
The 3d-satellite model is defined in a body fixed coordinate system (BFS). Three points

~ai, ~bi, ~ci define the triangular primitive surface Si. The normal vector of this area is

~ni =
(~bi − ~ai)× (~ci − ~ai)
|(~bi − ~ai)× (~ci − ~ai)|

(6.1)

while the magnitude of area is

Ai =
|(~bi − ~ai)× (~ci − ~ai)|

2
. (6.2)

For later calculation of the torque, the centroid is important, given by

~Ci =
1

3
(~ai +~bi + ~ci). (6.3)

It is useful to define the normal vector to the outside direction of the satellite. The total
surface area is simply the sum over all primitive areas

A =

N∑
i

Ai. (6.4)

The cross-section area of a primitive element perpendicular to a vector ~v (with direction
towards the spacecraft) is

Ac,i(v) = |Ai · ~ni · ~v| = |Ai · cos(α)| α = ](~v, ~ni). (6.5)
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For the computation of the whole cross-section area one has to take into account, that
surfaces may be at the back of the satellite (w.r.t. vector ~v). For satellites with convex
shape, the dot product ~ni ·~v is positive for surfaces at the back (because the angle is > 90◦).
Hence we have to sum only over elements with negative dot product:

Ac(v) =
∑

i:(~ni·~v<0)

|Ai · ~ni · ~v| (6.6)

6.2 Drag coefficient

The drag coefficient CD of a satellite is important for the drag calculation and depends on the
spacecraft’s shape, attitude and surface [Wertz, J. R., 2001]. A mathematical description is
given by

CD = γ CDS + δ CDD + (1− γ − δ) CDA (6.7)

where CDS describes the specular reflection, CDD the diffuse reflection and CA the absorp-
tion. Equations for these coefficients are [Wertz, J. R., 2001, p.70]

CDS =
4

A

∫
S

cos3(α) dS (6.8)

CDD = 2 +
1

A

∫
S

cos2(α) dS (6.9)

CDA = 2 (6.10)

where A is the cross-sectional area, S the front-surface and α the angle of incidence (0◦ <
α < 90◦). For a flat plate the coefficients are given CDS = 4 · cos2(α) and CDD = 2 + cos(α),
hence the drag coefficient of a satellite approximated with primitive triangular surfaces is:

CD =
∑

i:(~ni·~v<0)

[
4γ cos2(α) + δ(2 + cos(α)) + (1− γ − δ) · 2

]
, α = | ](~v, ~ni) | (6.11)

Unfortunately γ and δ have to be estimated or determined by experiments. They obey
γ + δ < 1. The “standard value” for CD is 2 [Fichter, 2004].

6.3 Mass Distribution

Figure 6.1: An OSTK primitive volume unit is defined by two triangles (123) and (456) and
consists of 8 surface

The knowledge of the mass distribution of a spacecraft is necessary to calculate the MoI
tensor, which is essential for proper solving of Euler’s Moment equations and for computa-
tion of the principal axes. In addition the gravitational acceleration in the satellite is not
homogeneous and yields to the gravity gradient torque, which also depends on the mass
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Figure 6.2: Internal view of GRACE satellite instruments; Image from CSR webpage

Figure 6.3: left: OSTK spacecraft model with an interior flat plate; right: mass distribution
of plate and surfaces, approximated with point masses

distribution. A straightforward method is to approximate the continuous mass distribution
with a finite number of point masses on a grid with fixed resolution. For a solid satellite
one can introduce primitive volume units, for example as shown in fig. 6.1, which have for
simplicity a homogeneous mass density. This volume unit is defined by two triangles (123)
and (456). Two volume units can be used, to approximate a solid cube, as shown in fig. 6.4
(right). As further example a GRACE satellite was approximated. The interior is shown
in fig. 6.2. On the main equipment platform most of the devices are mounted, which was
assumed as flat plate (with 300 kg mass). In fig. 6.3 this flat plate and the outer surfaces
were approximated with 4588 point masses. In fig. 6.4 (left) is the effect of an additional
300 kg mass in the equipment plate visible.
Although the use of so many points may be to slow for long-term orbit simulations, these
method can provide useful informations how mass shifts inside the satellite influence the
MoI tensor or the PAS.

6.4 Implementation

OSTK can handle a variable number of satellites. A satellite in OSTK is an instance of the
class tSatellites, located in satellites.h, which summarizes various properties and sub-
classes. The satellite for a particular simulation is defined in the mission.txt file. In the
following list the members of the tSatellite class are described, as well as the command
in the mission.txt to configure them.
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Figure 6.4: left: misalignment between PAS (short axes) and BFS due to a 300 kg mass
(red) in a 550 kg spacecraft; right: approximation of a cubic mass distribution

� char name[]: satellite’s name (useful for output)

mp name = GRACE-A

� ldouble mass: satellite’s mass (in kg)

mp mass = 450.0

� unsigned char CoM color[3]: satellite’s color (only for GUI output)

mp color = 127 0 0

� ldouble char CoM radius: satellite’s radius (only for GUI output)

mp radius = 2.0

� tStateVec CoMStateVec: CoM state vector (position, velocity and acceleration). The
initial values for the position (in meter) and velocity (in meter/seconds) can be defined
with

mp posvel = GCRF -4147374.85 572065.28 5343977.61 5959.31 -931.46 4728.11

or

mp posvel = ITRF -4147374.85 572065.28 5343977.61 5959.31 -931.46 4728.11

where the first argument denotes the coordinate system of the data. Another method
is to use Kepler Elements

mp posvel = Kepler a ecc nu incl omega argp

where a is the semi-major axis in meter, ecc is the eccentricity of the orbit (unitless),
nu is the true anomaly, incl is the inclination of the orbit, omega is the Right Ascension
of the Ascending Node and argp is the Argument of Perigee. The last four arguments
have units of degree.

� tkepl elem kepl: Kepler Elements of the point mass. They will be computed regu-
larly, if the following line is present:

mp keplerians = 1

� vector<tFTmodels> FTmodels: various perturbations forces and torques can be acti-
vated. Every activated perturbation is an entry in this vector and can store additional
informations about the satellite (like the drag-coefficient).
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� PropagatorType Propagator;

unsigned int PropagatorId;

the satellite’s movement can be computed by one of the following methods:

RUNGEKUTTAintegrator, MULTISTEPintegrator, KEPLERmethod

The Runge Kutta or the Multistep integrator can be activated by one of the following
commands:

mp prop = rk METHODNAME

mp prop = multi METHODNAME

The PropagatorId will be assigned properly due to the METHODNAME.

The Kepler propagator is enabled with:

mp prop = kepler

6.4.1 3-dimensional Models

The 3 dimensional satellite models were separated into the class tsat3d in sat3d.cpp .
The actual data is located in text files where all surfaces, volume units, thrusters or magnetic
dipole moments of the spacecraft are defined.
The following command loads the 3-d model:

mp3d satfile = sat1.mp3d

The MoI tensor can be defined directly using the matrix elements Ixx, Iyy, Izz, Ixy; Ixz, Iyz:

mp3d momofinertia = 150 130 15 ; 15 10 30

or can be calculated from the mass distribution of the satellite model:

mp3d momofinertia = massdistr

In both cases the MoI tensor is diagonalized using the Jacobi method located in jacobi-diag.h.
The eigenvectors are the principal axes (PAS) and the eigenvalues the principal moments.
Furthermore the initial attitude of the satellite has to be defined. Actually three methods
are provided:

mp3d initorient = RSW

the BFS will be aligned with the RSW system introduced in sec. 4.6.2, this means: satellite’s
front (BFS x axis) points in along track (nearly velocity) direction

mp3d initorient = NTW

as before, but the NTW system is chosen.

mp3d initorient = sat SATNAME

the satellite will point towards another satellite. A triadStateMat is used to calculate the
orientation.



72 CHAPTER 6. MODELLING SATELLITES



Chapter 7

Forces & Torques

In this chapter the forces (acceleration) and torques acting on the satellite are summarized.

7.1 Earth’s Gravity Field

7.1.1 Acceleration

As stated in App. B or in chapter 5 the Earth’s gravity potential can be written as

V (r, λ, θ) =
GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

P̄l,m(cos θ) · [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m] (7.1)

and the acceleration is

~̈r = ~∇xyz · V =

VxVy
Vz

 .

The two methods to obtain this acceleration are described in App. B.3 and App. B.5

7.1.2 Gravity Gradient Torque

The gravity gradient Ĝ (gradient of the acceleration) is the hessian matrix of the potential:

Ĝ =


∂2V
∂x∂x

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂y∂x

∂2V
∂y∂y

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z∂z

 =

Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 =

 ↑ ↑ ↑
∂~a
∂x

∂~a
∂y

∂~a
∂z

↓ ↓ ↓

 = ∇̂xyz · V (7.2)

Due to Clairaut’s theorem (sometimes also called Schwarz’s theorem or Young’s theorem)
the second derivatives are symmetric, hence the gravity gradient has 3 independent diagonal
elements and 3 independent off-diagonal elements.
The gravity gradient torque is caused due to inhomogeneity of the gravitational acceleration
over the expansion of the satellite.
Acutally three methods are implemented to calculate the gravity gradient Torque on the
Satellite.

Monopole Approximation

This method is derived in [Fichter, 2004]. It approximates the gravity gradient torque using
Earth’s monopole (point mass) acceleration. The formula is

~T|sGCRF = 3
GM

|~r|3
· ~esat × (Î|sGCRF · ~esat) with ~esat =

~r

r
(7.3)

where ~r is the position of the satellite in the GCRF frame and Î is the Moment of Inertia
Tensor as defined in 2.21, but rotated into the sGCRF system. The advantage of this formula
is that only the MoI tensor is required. However it neglects higher multipole moments of
the geopotential.
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7.1.3 Torque due to Acceleration of Point Masses

As mentioned in ch. 6 the mass distribution of the space craft can be approximated with
point masses. One very slow method is not to use the gravity gradient, but to calculate the
gravitational acceleration and torque on every point mass (of the spacecraft) and to sum
the torques:

~T|sGCRF =

N∑
i=0

~ri,|sGCRF ×mi · ~ai,|GCRF (7.4)

Here ~ri,|sGCRF denotes the position of the i-th masspoint in the sGCRF frame and ~ai,|GCRF
is the acceleration at the position of the i-th masspoint. Because the calculation of the
acceleration is CPU intensiv, this method is only useful to validate other computational
methods.

7.1.4 Torque due to Gravity Gradient and Point Masses

This method is similiar to the previous one, but faster. We can approximate the acceleration
at the position of the i-th point mass with a 3-dimensional taylor expansion (at the center
of mass) and neglect the quadratic terms.

~ri,|GCRF = ~rCoM,|GCRF + ~ri,|sGCRF (7.5)

~ai,|GCRF (~ri) = ~ai,|GCRF (~rCoM ) + Ĝ(~rCoM ) · ~ri,|sGCRF (7.6)

and insert this result in 7.4 yields to

~T|sGCRF =

N∑
i=0

~ri,|sGCRF ×mi ·
(
~ai,|GCRF (~rCoM ) + Ĝ(~rCoM ) · ~ri,|sGCRF

)
(7.7)

=

(
N∑
i=0

mi ~ri,|sGCRF

)
︸ ︷︷ ︸

=0

×~ai,|GCRF (~rCoM ) +

N∑
i=0

~ri,|sGCRF ×mi · Ĝ(~rCoM ) · ~ri,|sGCRF

(7.8)

=

N∑
i=0

~ri,|sGCRF ×mi · Ĝ(~rCoM ) · ~ri,|sGCRF (7.9)

(7.10)

The first sum vanished, because it is proportional to the center of mass, but in the sGCRF
frame. And the sGCRF origins at the CoM, hence it is zero.

This method needs only the gravity gradient and the approximated mass distribution.

Validation

All three methods were compared. The torque of both later methods matched very well,
while the monopole approximation deviated about 1%. Further research can be done, to
figure out how this deviation influences the attitude and what dependency exists to the
satellite’s dimension.

7.2 Direct 3rd Body Acceleration

7.2.1 Acceleration

The equation for the direct 3rd celestial body acceleration was derived in 5.22 or can be
found in [Vallado and McClain, 2007, eq. 8-34, p. 571]

~̈rPlanet = GMP

(
~P − ~r
|~P − ~r|3

−
~P

|~P |3

)
(7.11)
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where ~r is the satellite’s position in the GCRF frame and ~P the position of the celestial body
in the GCRF frame. Since the GCRF system is a pseudo-inertial system, we can not use
only the Newton’s Gravitational Law to calculate this acceleration, but we have to subtract
the acceleration of the GCRF origin towards the planet (this is the second part of the sum).
As pointed out by [Vallado and McClain, 2007], this equation can cause numerical problems
when simulating satellites with very high altitude.

The torque is neglgible due to the long distance to the planets.

7.3 Drag

7.3.1 Acceleration

The acceleration due to drag can be described with [Fichter, 2004] and [Vallado and McClain, 2007,
eq. 8-28]

~̈rDrag = −1

2

CD AC

m
ρair (~vr · ~vr) (7.12)

where ~vr is the velocity relative to the atmosphere, AC the cross-section area and ρair the
air density. The drag coefficient CD was introduced in sec. 6.2.
This acceleration can be calculated for every (primitive) surface.

7.3.2 Torque

The drag force acts homogenously on the surface, hence the torque is the cross-product of
centroid position and force vector:

~T|BFS,Drag = ~C|BFS × (m · ~̈r|BFS,Drag) (7.13)
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Chapter 8

Conclusion & Outlook

In this thesis an overview about the extent of OSTK was given. The Earth gravity field mod-
els were emphasized. Next to the basic mathematical methods, which are mainly located in
the appendix and explain why so many interesting geophysical effects can be expressed with
simple coefficients, it was tried to point out sticking points, like the different normalizations,
diversity of formats or rare transformation formulas for spherical second order derivatives.
The chapter 5 provided a summary of the terminology and of the models, which are neces-
sary to simulate precise satellite orbits. All together a reader should be able to implement
these models on his own in a little while.

Furthermore this thesis demonstrates, that OSTK is now capable of modeling the Earth’s
gravity field with all major contributions. Together with the simulation of attitude, which
is now understood as the results in chapter 1 show, and the introduction of 3-dimensional
spacecraft models, which were preliminary explained in chapter 6, a new level of accuracy
and new research fields can be reached within the next time.

However there are still various things to do: the implementation of the IGRF geomagnetic
model is sill outstanding, the solar radiation pressure torque needs to be considered and a
validation of the newly introduced torque perturbations has to be done.

In addition the simulation of precise LISA orbits can be a challenge in the future.
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Appendix A

Time derivatives of a unit vector

Given is a vector in direction ~r = (x(t), y(t), z(t))T and the time derivatives ~̇r and ~̈r. We

want to calculate ~e, ~̇e,and ~̈e, where

~e =
~r

r
(A.1)

with |~r| = r =
√
x2(t) + y2(t) + z2(t).

A.1 First time derivative of |~r| = r

d

dt
r =

1√
x2(t) + y2(t) + z2(t)

(x(t) · ẋ(t) + y(t) · ẏ(t) + z(t) · ż(t))) (A.2)

=
~r

r
~̇r (A.3)

= ~e · ~̇r (A.4)

(A.5)

A.2 First time derivative of ~̇e

d

dt
~e =

~̇r

r
+ ~r · d

dt

(
1

r

)
=
~̇r

r
− ~r ·

(
ṙ

r2

)
=
~̇r

r
−
(
~r

r

)
·
(
ṙ

r

)
(A.6)

= =
~̇r

r
− ~e ·

(
ṙ

r

)
(A.7)

(A.8)

with the definition of a vector ~s := ~̇r
r we get

~̇e =
d

dt
~e = ~s− ~e ·

(
ṙ

r

)
= ~s− ~e · (~e · ~s) (A.9)

A.3 Time derivative of ~s

~̇s =
~̈r

r
− ~̇r · ṙ

r2
(A.10)

=
~̈r

r
− ~s · ṙ

r
(A.11)

=
~̈r

r
− ~s · (~e · ~s) (A.12)

(A.13)
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A.4 Second time derivative of ~̈e

According to (A.9):

~̈e = ~̇s− ~̇e · (~e · ~s)− ~e · d
dt

(~e · ~s) (A.14)

= ~̇s− ~̇e · (~e · ~s)− ~e · (~̇e · ~s+ ~e · ~̇s) (A.15)

A.5 OSTK function diffunitvec(...)

This method to calculate the unit vector and it’s time derivatives is implemented in diffunitvec(...)

in lutils.cpp .



Appendix B

Spherical Multipole Expansion

The motivation for this chapter is given by the general problem to describe vector fields
like Earth’s gravitational field or an electrostatic field outside the source. Let us assume
a volume V , where the field ~F (~r) is generated. It can be a mass distribution or charge
distribution. Outside the volume V is no source, hence the divergence is zero

∇ · ~F (~r) = 0. (B.1)

Furthermore ~F (~r) shall be conservative, hence it can be expressed by a scalar potential φ(~r)
with

~F (~r) = ±∇φ(~r). (B.2)

The minus sign is usually convention in physics, but it is often neglected in geophysics or
geodesy. The Laplace equation is valid for this problem

∆φ(~r) = ∇2φ(~r) = 0. (B.3)

B.1 Definitions

B.1.1 Legendre polynomials of first kind

The Legendre polynomials Pl(x) are solutions of Legendre’s differential equation [Riley, 2006,
18.1, p.577]

(1− x2) · d
2y

dx2
− 2x

dy

dx
+ l(l + 1) = 0 (B.4)

where we used the notation y = Pl(x). Another representation is known as Rodrigues’
formula:

Pl(x) =
1

2l · l!
dl

dxl
(x2 − 1)l. (B.5)

The calculation is possible via recurrence relations [Riley, 2006, 18.23-18.26]. Usually the
polynomials are normalized to satisfy

Pl(1) = 1.

One interesting application can be found when examining the inverse distance between two
points in 3-dimensions. They can be expressed in spherical coordinates with position vectors
~r(r, θ, ϕ) and ~q(r′, θ′, ϕ′). The inverse distance is

1

|~r − ~q|
=

1√
r2 + r′2 − 2rr′ cosα

(B.6)

=
1

r
· 1√

1 + (r′/r)
2 − 2(r′/r) cosα

with α = ∠(~r, ~q). (B.7)
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We can use a Taylor expansion on the right fraction to obtain this helpful relation [Riley, 2006,
18.22, p.585] and [Montenbruck and Gill, 2000, 3.6, p.56]

1

|~r − ~q|
=

1

r

∞∑
l=0

(
r′

r

)l
Pl(cos(θ)). (B.8)

This sum converges if r′ < r (cf. geometric series). We used the convention in spherical
coordinates with co-latitude, however some authors use latitude then Pl(sin(θ)) has to be
used.

B.1.2 Associated Legendre polynomials of first kind

The associated Legendre polynomials Pml (x) of degree l and order m are the solutions of
the following equation [Riley, 2006, 18.28]:

(1− x2) · d
2y

dx2
− 2x

dy

dx
+

(
l(l + 1)− m2

1− x2

)
y = 0 (B.9)

with the notation y = Pml (x) and −l < m < l. The degree and order are integer numbers.
It is obvious, that if m = 0 the equation simplifies to the Legendre’s differential equation
and we get

P 0
l (x) = Pl(x) ∀l. (B.10)

The relation to the non-associated Legendre polynomials is given by

Pml (x) = (1− x2)(m/2) · d
m

dxm
Pl(x) m > 0 (B.11)

and for negative m we can use [Riley, 2006, 18.33]

P−ml (x) = (−1)m · (l −m)!

(l +m)!
· Pml (x) m > 0 (B.12)

The functions are often normalized using a normalization factor Nm
l :

P̄ml (cos θ) = Pml (cos θ) ·Nm
l (B.13)

In addition this notation is commonly used in physics (be careful with the position of l and
m):

Pl,m(x) = (−1)mPml (x) (B.14)

whereas (−1)m is referred as Condon–Shortley phase. However this factor is neglected in
geodesy and in this derivation.The following notation will be used instead:

Pl,m(x) =
√

2− δm,0 · Pml (x) (B.15)

It will will be shown subsequently, why this factor was introduced. The function Pl,m will
be used in real spherical harmonics, while Pml is for complex spherical harmonics.

B.1.3 Spherical Harmonics

The complex spherical harmonics (SH) Yl,m(θ, ϕ) are eigenfunctions of the Laplace operator,
when we neglect the radial portion and are defined as [Riley, 2006, 18.45]

Y ml (θ, ϕ) = P̄ml (cos(θ)) · eimϕ (B.16)

= Nm
l · Pml (cos(θ)) · eimϕ. (B.17)

According to eq. (B.12) and eq. (B.17) , we get

Y −ml (θ, ϕ) = Nm
l · Pml (cos(θ)) · e−imϕ (B.18)

= (−1)m · [Y +m
l (θ, ϕ)]∗ (B.19)
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The spherical harmonic functions are an orthonormal and complete set of functions on the
unit sphere. Hence arbitrary complex functions f(θ, ϕ) can be expressed in the basis of the
spherical harmonics

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ) (B.20)

with complex coefficients cml (cf. Fourier transformation).

One important theorem is the spherical harmonic addition theorem, which connects the
Legendre polynomials and the SH functions [Riley, 2006, 18.49].

Pl(cos(α)) =

(
1

Nm
l

)2
(l −m)!

(l +m)!︸ ︷︷ ︸
κm
l

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.21)

= κml

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.22)

where α is the angle between two position vectors ~r(r, θ, ϕ) and ~q(r′, θ′, ϕ′) given in spherical
coordinates and ∗ denotes the complex-conjugation.

The first orthonormalized complex SH are

Y 0
0 (θ, ϕ) =

√
1

4π
, Y 0

1 (θ, ϕ) =

√
3

4π
cos(θ), Y ±1

1 (θ, ϕ) = ∓
√

3

8π
sin(θ) exp±iϕ

(B.23)

Real Spherical Harmonics

If we have only real functions, we can use the real SH functions defined with

Yl,m(θ, ϕ) =

{
P̄ml (cos θ) cos (mϕ) m ≥ 0

P̄
|m|
l (cos θ) sin (|m|ϕ) m < 0

(B.24)

The advantage of definition B.15 and B.24 becomes obvious, when we rearrange the sum in
B.22 (note that the lhs of B.22 is real, hence the rhs):

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.25)

=

l∑
m=1

(
Y ml · [Y ′

m
l ]∗ + Y −ml · [Y ′−ml ]∗

)
+
(
Y 0
l · [Y ′

0
l ]
∗
)

(B.26)

=

l∑
m=1

(Nm
l )2[Pml (cos θ)Pml (cos θ′)eim(ϕ−ϕ′) + Pml (cos θ)Pml (cos θ′)eim(ϕ′−ϕ)] (B.27)

+ (N0
l )2[P 0

l (cos θ)P 0
l (cos θ′)] (B.28)

=

l∑
m=1

[P̄ml (cos θ)P̄ml (cos θ′) · 2 · cos (m(ϕ− ϕ′))] + ·[P̄ 0
l (cos θ)P̄ 0

l (cos θ′)] (B.29)

=

l∑
m=0

(2− δm,0) · P̄ml P̄ ′
m
l · cos (m(ϕ− ϕ′)) (B.30)

(B.31)

The prefactor is caused by the zero order terms. The cosine addition theorem states:

cos (m(ϕ− ϕ′)) = cos (mϕ) cos (mϕ′) + sin (mϕ) sin (mϕ′) (B.32)
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and finally we can transform P̄ml to P̄l,m using B.15 and exploit the theorem:

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.33)

=

l∑
m=0

(2− δm,0) · P̄ml P̄ ′
m
l · cos (m(ϕ− ϕ′)) (B.34)

=

l∑
m=0

P̄l,mP̄ ′l,m · cos (m(ϕ− ϕ′)) (B.35)

=

l∑
m=0

P̄l,mP̄ ′l,m · [cos (mϕ) cos (mϕ′) + sin (mϕ) sin (mϕ′)] (B.36)

=

l∑
m=0

[Yl,mY
′
l,m + Yl,−mY

′
l,−m] (B.37)

We are now able to rewrite the spherical harmonic addition theorem B.22 to the real case
[Montenbruck and Gill, 2000, eq. 3.8].

Pl(cos(α)) =

(
1

Nm
l

)2
(l −m)!

(l +m)!︸ ︷︷ ︸
κm
l

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.38)

= κml

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ (B.39)

= κml

l∑
m=0

[Yl,mY
′
l,m + Yl,−mY

′
l,−m] (B.40)

= κml (2− δm,0)

l∑
m=0

P̄l,m(cos θ)P̄l,m(cos θ′) · [cos (mϕ) cos (mϕ′) + sin (mϕ) sin (mϕ′)]

(B.41)

= κlm

l∑
m=0

P̄l,m(cos θ)P̄l,m(cos θ′) · [cos (mϕ) cos (mϕ′) + sin (mϕ) sin (mϕ′)]

(B.42)

B.1.4 Normalization

The diversity of normalizations can cause confusion. The factor (2− δm,0) appears only in
real SH representation. The transformations are

Nl,m =
√

(2− δm,0) ·Nm
l , (B.43)

κl,m = (2− δm,0) · kml , (B.44)

P̄l,m = Nl,m · Pml . (B.45)

According to [Wieczorek, 2010] the most common normalization factors for the real case
are:
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Racah or Orthonormalization

Commonly used in seismology and physics, especially in quantum mechanics, these SH
functions can be understood as probabilities.

(Nl,m)ON =

√
(2− δm,0)

2l + 1

4π

(l −m)!

(l +m)!
(B.46)

(κl,m)ON =
4π

2l + 1
(B.47)∫ +1

−1

P̄l,m(x) · P̄l′,m′(x) dx =
(2− δm,0)

2π
δl,l′ (B.48)∫

Sphere

Yl,m(Ω) · Yl′,m′(Ω) dΩ = δm,m′δl,l′ (B.49)

Schmidt Semi-Normalization

Usually this occurs in the field of magnetism (e.g. geomagnetic field):

(Nl,m)SSM =

√
(2− δm,0)

(l −m)!

(l +m)!
(B.50)

(κl,m)SSM = 1 (B.51)∫ +1

−1

P̄l,m(x) · P̄l′,m′(x) dx =
2(2− δm,0)

2l + 1
δl,l′ (B.52)∫

Sphere

Yl,m(Ω) · Yl′,m′(Ω) dΩ =
4π

2l + 1
δm,m′δl,l′ (B.53)

Geodesy 4π-Normalization

This normalization is used for Earth’s gravitational field models or ocean tide models. Often
coefficients with this normalization are referred to as “fully normalized”.

(Nl,m)GED =

√
(2− δm,0)(2l + 1)

(l −m)!

(l +m)!
(B.54)

(κl,m)GED =
1

2l + 1
(B.55)∫ +1

−1

P̄l,m(x) · P̄l′,m′(x) dx = 2(2− δm,0)δl,l′ (B.56)∫
Sphere

Yl,m(Ω) · Yl′,m′(Ω) dΩ = 4π · δm,m′δl,l′ (B.57)

Unnormalized

(Nl,m)UN = 1 (B.58)

(κl,m)ON =
(l −m)!

(l +m)!
(B.59)∫ +1

−1

P̄l,m(x) · P̄l′,m′(x) dx =
2

2l + 1

(l +m)!

(l −m)!
δl,l′ (B.60)∫

Sphere

Yl,m(Ω) · Yl′,m′(Ω) dΩ =
4π

(2− δm,0)
· (l +m)!

(l −m)!
δm,m′δl,l′ (B.61)

B.2 Gravitational Potential Expansion

Now we can derive the SH representation of Earth’s gravitational field. The general gravi-
tational potential of an arbitrary mass distribution ρ(~r′) in Volume V is given by

φ(~r) = G

∫
V

ρ(~r′)
|~r − ~r′|

d3r′. (B.62)
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with ~r as the position vector of the evaluation point and ~r′ the integration vector inside the
volume.

We can now use eq. B.8 and eq. B.22 to instruct the complex SH functions in this equation:

φ(~r) = G

∫
V

ρ(~r′)
r
·
∞∑
l=0

(
r′

r

)l
Pl(cos(θ))d3r′ (B.63)

= G

∫
V

ρ(~r′)
r
·
∞∑
l=0

(
r′

r

)l
κml

l∑
m=−l

Y ml (θ, ϕ) · [Y ml (θ′, ϕ′)]∗ d3r′ (B.64)

=
G

r

∞∑
l=0

l∑
m=−l

(
r′

r

)l
Y ml (θ, ϕ)

∫
V

ρ(~r′) · κml · [Y ml (θ′, ϕ′)]∗ d3r′ (B.65)

=
G

r

∞∑
l=0

l∑
m=−l

1

rl
Y ml (θ, ϕ)

√
κml

∫
V

(r′)l · ρ(~r′)
√
κml · [Y

m
l (θ′, ϕ′)]∗ d3r′ (B.66)

= G

∞∑
l=0

l∑
m=−l

1

rl+1
Y ml (θ, ϕ) ·

√
κml ·Q

m
l (B.67)

whereas we introduced the general spherical moments, which can be imaginary:

Qml :=

∫
V

(r′)l · ρ(~r′)
√
κml · [Y

m
l (θ′, ϕ′)]∗ d3r′ (B.68)

For l = 0,m = 0 the moment is proportional to the total mass M inside the volume
(monopole)

Q0
0 =

∫
V

1 · ρ(~r′)
√
κ0

0 · [Y 0
0 (θ′, ϕ′)]∗ d3r′ (B.69)

=

∫
V

ρ(~r′)

√
1

N0
0

·N0
0 · [P 0

0 (cos(θ′)]∗ d3r′ (B.70)

=

∫
V

ρ(~r′)
√
N0

0 · P0(cos(θ′)) d3r′ (B.71)

=
√
N0

0

∫
V

ρ(~r′) · 1 d3r′ (B.72)

=
√
N0

0

∫
V

ρ(~r′) d3r′ =
√
N0

0M. (B.73)

If we calculate the potential using eq. B.67 only for l = 0,m = 0, we get the potential of a
point mass with mass M .

We now switch to real SH functions and introduce the Earth radius a and Earth’s mass M
and obtain the Spherical Harmonic expression for Earth’s gravitational field:

φ(~r) = G

∫
V

ρ(~r′)
r
·
∞∑
l=0

(
r′

r

)l
κml

l∑
m=−l

[Yl,m(θ, ϕ) · Yl,m(θ′, ϕ′) + Yl,−m(θ, ϕ) · Yl,−m(θ′, ϕ′)] d3r′

(B.74)

=
GM

r
·
∞∑
l=0

l∑
m=−l

(a
r

)l
P̄l,m(cos θ)

κml
M

∫
V

(
r′

a

)l
ρ(~r′)[cos(θ) · Y ′l,m + sin(ϕ) · Y ′l,−m] d3r′

(B.75)

=
GM

r
·
∞∑
l=0

l∑
m=0

(a
r

)l
P̄l,m(cos θ) · [cos (mϕ) · C̄l,m + sin(mϕ) · S̄l,m] (B.76)
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with normalized Stokes coefficients

C̄lm =
κml
M

∫
V

(
r′

a

)l
ρ(~r′) · P̄l,m(cos θ′) · cos (mϕ′) d3r′ (B.77)

S̄l,m =
κml
M

∫
V

(
r′

a

)l
ρ(~r′) · P̄l,m(cos θ′) · sin (mϕ′) d3r′ (B.78)

It is obvious, that

S̄l,m=0 = 0 ∀l (B.79)

and as previous the l = 0,m = 0 term is proportional to the total mass (and here unity due
to normalization)

C̄0,0 = 1. (B.80)

In addition it can be shown, that C̄1,0, C̄1,1, S̄1,1 are proportional to the CoM coordinates
x, y, z respectively. The infinite sum can be truncated at an appropriate degree lmax. If we
assume the CoM as the origin of our coordinate system, we obtain:

φ(r, θ, ϕ) =
G ·M
r
·

[
1 +

lmax∑
l=0

l∑
m=2

(a
r

)l
P̄l,m(cos θ′) · (cos (mϕ) · C̄l,m + sin(mϕ) · S̄l,m)

]
(B.81)

The spatial resolution of a spherical harmonic expansion (on the earth’s surface) with max-
imum degree lmax is

A =
20000 km

lmax
(B.82)

or in degree:

α =
180◦

lmax
(B.83)

B.2.1 Determination of the Geopotential Field

Actually the equations B.77 and B.78 are difficult to calculate, because Earth’s mass density
is not known to high precision. The geopotential models are usually calculated using obser-
vations of the gravity field and/or satellite orbits combined fitting procedures (for example
Least-Squares).

B.3 Derivatives of the Geopotential in Spherical Coor-
dinates

To calculate the acceleration due to the geopotential V = φ we need the derivatives of
B.76. One straightforward way is to calculate the derivatives in spherical coordinates and
transform then to cartesian.

∂V

∂r
= −GM

r2
·
lmax∑
l=0

(l + 1)
(a
r

)l l∑
m=0

P̄l,m(cos θ) · [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m] (B.84)

∂V

∂λ
= +

GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

P̄l,m(cos θ) ·m · [cos(mλ) · S̄l,m − sin (mλ) · C̄l,m] (B.85)

∂V

∂θ
= +

GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

dP̄l,m(cos θ)

dθ
· [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m] (B.86)

Second order derivatives are necessary for the gravity gradient:



88 APPENDIX B. SPHERICAL MULTIPOLE EXPANSION

∂2V

∂r∂r
= +

GM

r3
·
lmax∑
l=0

(l + 1)(l + 2)
(a
r

)l l∑
m=0

P̄l,m(cos θ) · [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m]

(B.87)

∂2V

∂λ∂λ
= −GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

P̄l,m(cos θ) ·m2 · [sin(mλ) · S̄l,m + cos (mλ) · C̄l,m] (B.88)

∂V

∂θ∂θ
= +

GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

d2P̄l,m(cos θ)

dθ2
· [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m] (B.89)

∂2V

∂r∂λ
= −GM

r2
·
lmax∑
l=0

(l + 1)
(a
r

)l l∑
m=0

P̄l,m(cos θ) ·m · [cos(mλ) · S̄l,m − sin (mλ) · C̄l,m]

(B.90)

∂2V

∂r∂θ
= −GM

r2
·
lmax∑
l=0

(l + 1)
(a
r

)l l∑
m=0

dP̄l,m(cos θ)

dθ
· [cos (mλ) · C̄l,m + sin(mλ) · S̄l,m]

(B.91)

∂2V

∂λ∂θ
= +

GM

r
·
lmax∑
l=0

(a
r

)l l∑
m=0

dP̄l,m(cos θ)

dθ
·m · [cos(mλ) · S̄l,m − sin (mλ) · C̄l,m] (B.92)

This equations are implemented in the following function:
calc sh deriv(...) in SHutils.cpp

B.4 Transformation Spherical Derivatives to Cartesian
Derivatives

The transformation of spherical derivatives to cartesian is constituted by the nabla operator
in spherical coordinates [Riley, 2006, Table 10.3, p.363]

~∇xyzV =
∂V

∂r
· ~er +

1

r

∂V

∂θ
· ~eθ +

1

r sin(θ)

∂V

∂λ
· ~eλ (B.93)

It is possible to use a matrix-vector notation, where the prefactors are written in a diagonal
matrix B̂ and the spherical unit vectors into a matrix R̂:

~∇(rθλ)V =
(
∂V
∂r

∂V
∂θ

∂V
∂λ

)T
(B.94)

R̂ =

 ↑ ↑ ↑
~er ~eθ ~eλ
↓ ↓ ↓

 =

sin(θ) cos(λ) cos(θ) cos(λ) − sin(λ)
sin(θ) sin(λ) cos(θ) sin(λ) cos(λ)

cos(θ) − sin(θ) 0

 (B.95)

B̂ =

1 0 0
0 1

r 0
0 0 1

r sin(θ)

 (B.96)

VxVy
Vz

 = ~∇xyz · V = R̂B̂︸︷︷︸
Q̂

·~∇(rθλ) · V = Q̂ · ~∇(rθλ) · V = Q̂ ·

VrVθ
Vλ

 (B.97)

We can express this transformation with a single matrix-vector multiplication. The matrix
Q̂ and the derivatives w.r.t. spherical coordinates (for later use) are:

Q̂ =

sin(θ) cos(λ) cos(θ) cos(λ)/r − sin(λ)/(r sin(θ))
sin(θ) sin(λ) cos(θ) sin(λ)/r cos(λ)/(r sin(θ))

cos(θ) − sin(θ)/r 0

 (B.98)
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∂Q̂

∂r
=

0 − cos(θ) cos(λ)/r2 + sin(λ)/(r2 sin(θ))
0 − cos(θ) sin(λ)/r2 − cos(λ)/(r2 sin(θ))
0 + sin(θ)/r2 0

 (B.99)

∂Q̂

∂θ
=

cos(θ) cos(λ) − sin(θ) cos(λ)/r + sin(λ) cos(θ)/(r sin(θ)2)
cos(θ) sin(λ) − sin(θ) sin(λ)/r − cos(λ) cos(θ)/(r sin(θ)2)
− sin(θ) − cos(θ)/r 0

 (B.100)

∂Q̂

∂λ
=

− sin(θ) sin(λ) − cos(θ) sin(λ)/r − cos(λ)/(r sin(θ))
sin(θ) cos(λ) cos(θ) cos(λ)/r − sin(λ)/(r sin(θ))

0 0 0

 (B.101)

The transformation of the gravity gradient is more challenging. Preliminary we try to
calculate the derivatives of Vx using the matrix Q.VxxVyx

Vzx

 = ~∇xyz · Vx = Q̂ · ~∇(rθλ)Vx (B.102)

= Q̂ ·

 ∂
∂r
∂
∂θ
∂
∂λ

 (Q̂ · ~∇(rθλ)V )x (B.103)

It is convenient to do further calculations with index notation. The indices now denote
matrix elements and derivatives are written as ∂

∂ . Latin and Greek indices go from 1 to
3, but concerning differentiation the Greek indices refer to spherical derivatives while Latin
indices stand for cartesian derivatives.

∂2V

∂i ∂k
=

3∑
α=1

Qiα
∂

∂α
(Q̂ · ~∇(rθλ)V )k (B.104)

=

3∑
α=1

3∑
β=1

Qiα
∂

∂α
(Qkβ · (~∇(rθλ)V )β) (B.105)

=

3∑
α=1

3∑
β=1

Qiα
∂

∂α
(Qkβ ·

∂

∂β
V ) (B.106)

now we use the product rule to obtain the end result:

∂2V

∂i ∂k
=

3∑
α=1

3∑
β=1

Qiα(
∂Qkβ
∂α

· ∂V
∂β

+Qkβ ·
∂2V

∂α∂β
) (B.107)

The implementation in the source code of the last equation is very simple:

Listing B.1: gravity gradient: conversion from spherical to carte-
sian� �
f o r ( i =0; i < 3 ; i++)
f o r ( k = 0 ; k<=i ; k++)
f o r ( a=0; a<3; a++)
f o r (b=0; b<3;b++){

Vcart [ i ] [ k ] += Q[ i ] [ a ] * (dQ[ a ] [ k ] [ b ]*R[ b]+Q[ k ] [ b ]*Vsph [ a ] [ b ] ) ;
}
� �

Unfortunately the conversion from spherical to cartesian derivatives has a singularity at
the poles. However the satellite has to be very near to the poles to cause problems, what
practically never occurred in the simulations. One can validate the equation (B.107) by
calculating directly the cartesian derivatives, as stated in the next section.
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B.5 Calculating directly Cartesian Derivatives

It is also possible to calculate directly the cartesian coordinates, as shown by
[Cunningham, 1970] for unnormalized Stoke’s Coefficients. [Petrovskaya and Vershkov, 2010]
has extended this method also for 4π-normalized coefficients. The latter method is imple-
mented in OSTK. For calculation of the first derivatives one has to calculate 6 coefficients
Cx, Cy, Cz, Sx, Sy, Sz from the Stoke’s Coefficient C and S. Then there is a summation for-
mula similar to the spherical harmonic expansion to yield the acceleration. Next to the
advantage of calculating directly the cartesian derivatives, also at the poles, this method
needs only the associated Legendre polynomials (without derivatives). However, it is not
convenient in the case of time dependent Stoke’s Coefficients due to performance issues.

B.6 Recurrence Relations for P̄l,m(cos θ) and Derivatives

There are various recurrence formulas for the associated Legendre polynomials. In
[Montenbruck and Gill, 2000] and [Riley, 2006] are formulas for unnormalized ones. In
OSTK are Geodesy 4π normalized formulas implemented based on [Wenzel, 1985]. The
second derivatives are not in [Wenzel, 1985] and were self-derived. The following function is
responsible for the evaluation for a particular co-latitude θ:

Listing B.2: eval Plm() in SHutils.cpp� �
/* eva luate Assoc iated Legendre polynomia ls Plm( cos ( theta ) ) and d e r i v a t i v e s

*

* t h i s func t i on c a l c u l a t e s & eva lu t e s the Assoc iated Legendre polynomia ls o f

* f i r s t kind :

* Plm( cos ( theta ) )

* and the f i r s t two d e r i v a t i v e s (w. r . t . theta ) dPlm and ddPlm

* f o r a l l degree s l <= MAXDEG and orde r s m <= MAXDEG

*

* uses : geodesy 4−pi normal i za t ion

*

* based on Wenzel 1995 − ” Hochauf loesende Kuge l funkt ionsmode l l e f u e r

* das G r a v i t a t i o n s p o t e n t i a l der Erde”

*

* the r e s u l t i s wr i t t en in a long−double array with 5 columns and N rows ,

* whereas N = (MAXDEG) *(MAXDEG+1)/2+MAXDEG

*

* the array s t a r t s at [ 0 ] [ 0 ] and ends at [N ] [ 4 ] .

* P[MAXDEG] [MAXDEG] ( cos theta ) i s the l a s t element .

*

* the columns are :

* 0 : Plm , 1 : dPlm , 2 : ddPlm , 3 : l degree , 4 :m order

*

* @param [ in ] THETA co−l a t i t u d e o f the eva lua t i on po int

* @param [ in ] MAXDEG maximum degree f o r c a l c u l a t i o n

* @param [ out ] mPlm memory f o r va lues (5− c o l ldoub l e array )

*/

void eval Plm (
l doub le THETA,
unsigned i n t MAXDEG,
l doub le *mPlm) ;
� �

There is a paper by [Holmes and Featherstone, 2002], in which actual methods for calcula-
tion even of high degree (lmax = 2700) associated Legendre polynomials and derivatives is
presented. One difficulty is to ensure numerical stability of the polynomials.
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B.7 Spherical Harmonic expansion of a scalar field with
two parameters

Assuming the scalar field given in eq. (5.54) on page 57 which has an amplitude A and
phase δ at every point on a sphere:

A(ϕ, θ, t) =
∑
s

As(ϕ, θ, t) =
∑
s

as(ϕ, θ) · cos(ωst+ χs + δs(ϕ, θ)) (B.108)

or for simplicity only

As(ϕ, θ, t) = as(ϕ, θ) · cos(ωst+ χs + δs(ϕ, θ)) (B.109)

we can use cosine addition theorem to rewrite this equation as

A(ϕ, θ, t) = as(ϕ, θ) (cos(ωst+ χs) cos(δs(ϕ, θ))− sin(ωst+ χs) sin(δs(ϕ, θ)))

= as(ϕ, θ) cos(δs(ϕ, θ))︸ ︷︷ ︸ cos(ωst+ χs)− as(ϕ, θ) sin(δs(ϕ, θ))︸ ︷︷ ︸ sin(ωst+ χs)

(B.110)

Further assuming that the underbraced parts are harmonic, we can expand this terms with
real spherical harmonics. Using geodesy 4π normalization introduces the factor κlm = 1

2l+1
as described in B.1.4:

as(ϕ, θ) cos(δs(ϕ, θ)) =

∞∑
l=0

l∑
m=0

(Klms cos(mϕ) + Llms sin(mϕ))
P̄lm(sin(θ))

2l + 1

as(ϕ, θ) sin(δs(ϕ, θ)) =

∞∑
l=0

l∑
m=0

(Mlms cos(mϕ) +Nlms sin(mϕ))
P̄lm(sin(θ))

2l + 1
(B.111)

where K,L,M,N are coefficients. Four coefficients are necessary per degree, order and tidal
wave to describe the total scalar field:

As(ϕ, θ, t) =

∞∑
l=0

l∑
m=0

P̄lm(sin(θ))

2l + 1
[ (Klms cos(mϕ) + Llms sin(mϕ)) cos(ωst+ χs)+

+ (Mlms cos(mϕ) +Nlms sin(mϕ)) sin(ωst+ χs)] (B.112)

Exploitation of addition theorems for cos(ωst+χs) and sin(ωst+χs) and rearranging yields
with (cb = cos(χs), sb = sin(χs))

As(ϕ, θ, t) =

∞∑
l=0

l∑
m=0

P̄lm(sin(θ))

2l + 1

[cos(mϕ)(cos(ωst) (cb Klms +Mlms sb)︸ ︷︷ ︸
C+

lms+C−lms

+ sin(ωst) (cb Mlms −Klms sb))︸ ︷︷ ︸
S+
lms+S−lms

+ sin(mϕ)(cos(ωst) (cb Llms +Nlms sb)︸ ︷︷ ︸
S+
lms−S

−
lms

+ sin(ωst) (cb Nlms − Llms sb))︸ ︷︷ ︸
C+

lms−C
−
lms

] (B.113)

As(ϕ, θ, t) =

∞∑
l=0

l∑
m=0

P̄lm(sin(θ))

2l + 1
(B.114)

[cos(mϕ)(cos(ωst) (C+
lms + C−lms) + sin(ωst)(S

+
lms + S−lms)) (B.115)

+ sin(mϕ)(cos(ωst) (S+
lms − S

−
lms) + sin(ωst)(C

+
lms − C

−
lms))] (B.116)

Another convention uses two amplitudes and two phases, instead of four amplitudes (coeffi-
cients), to describe this field. The transformation can be performed with [McCarthy, 2004,
eq. 14]:

C±lms − iS
±
lms = −iĈ±lms e

i(ε±lms+χs) (B.117)
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where Ĉ±lms are the new coefficients and ε±lms the two phases. After the use of some (messy)
addition theorems, the field can be written as:

As(ϕ, θ, t) =

∞∑
l=0

l∑
m=0

P̄lm(sin(θ))

2l + 1

[cos(mϕ)(sin(ωst+ ε+lms + χs) Ĉ
+
lms + sin(ωst+ ε−lms + χs)Ĉ

−
lms)

+ sin(mϕ)(cos(ωst+ ε+lms + χs) Ĉ
+
lms − cos(ωst+ ε−lms + χs)Ĉ

−
lms)] (B.118)
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